a2 United States Patent

Davis

US009262383B2

US 9,262,383 B2
*Feb. 16, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)
(73)

")

@
(22)
(65)

(60)

(60)

(1)

(52)

(58)

SYSTEM, METHOD, AND COMPUTER
PROGRAM PRODUCT FOR PROCESSING A

MARKUP DOCUMENT

Applicant: e-Numerate Solutions, Inc., Great Falls,
VA (US)

Inventor: Russell T Davis, Bethesda, MD (US)

Assignee: e-Numerate Solutions, Inc., Great Falls,
VA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.
This patent is subject to a terminal dis-
claimer.

Appl. No.: 14/724,792

Filed: May 28, 2015

Prior Publication Data
US 2015/0261727 Al Sep. 17, 2015

Related U.S. Application Data

Continuation-in-part of application No. 12/222,751,
filed on Aug. 15, 2008, which is a division of
application No. 09/573,778, filed on May 18, 2000,
now Pat. No. 7,421,648.

Provisional application No. 60/183,152, filed on Feb.
17, 2000, provisional application No. 60/135,525,
filed on May 21, 1999.

Int. Cl.
GO6F 3/00 (2006.01)
GO6F 1721 (2006.01)
(Continued)
U.S. CL
CPC GO6F 17/218 (2013.01); GO6F 17/2252

(2013.01); GOGF 17/30014 (2013.01); GO6F
17/30882 (2013.01)
Field of Classification Search
CPC ... GOGF 17/218; GOG6F 17/2252; GOG6F
17/30014; GOGF 17/30882
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

4,674,043 A
5,008,853 A

6/1987 Hernandez et al.
4/1991 Blyetal.

(Continued)

FOREIGN PATENT DOCUMENTS

WO
WO

0072197 A2 11/2000
0161568 A2 8/2001

OTHER PUBLICATIONS

Non-Final Office Action from U.S. Appl. No. 11/819,125, dated Mar.
25,2014.

(Continued)

Primary Examiner — Kyle Stork

(57) ABSTRACT

A system, method, and computer program product are pro-
vided for identifying a first markup document including first
numerical values and first tags reflecting first characteristics
of the first numerical values associated with a first unit of
measure, and a second markup document including second
numerical values and second tags reflecting second charac-
teristics of the second numerical values associated with a
second unit of measure. The first characteristics of the first
numerical values associated with the first unit of measure are
different from the second characteristics of the second
numerical values associated with the second unit of measure.
At least a portion of the numerical values of at least one of the
first markup document or the second markup document are
automatically transformed, so that the at least some of the first
numerical values of the first markup document and at least
some of the second numerical values of the second markup
document have a common unit of measure. Further, at least a
part of the first markup document and at least a part of the
second markup document are processed, resulting in a single
markup document, for display.

18 Claims, 40 Drawing Sheets

71i
02 w02 Chart Dala
4 76
RDML Document
ROML Documergd | Type Deliriion (o)
oTD) Chart Manager
)/755 e
™ TreeViow
Tree View 718
Manger o4
‘Spreadsheet
i icoiu)}Z_’C‘Tzs—>_ Dosemert Object/ Quiput Object
Mane acument e Je
ROML o Process AR.':,"‘“"'.“" Storage
Processor (View)
st (e
Mo [store (DOM 7
objects) Footnote Manager| 2
e Graphical
User Third-Party Input
Tr
ansformer Intertace Software Output (- Progrem
730 G Component Proces:
Macro Manager ;734 P N
f GeaphicalUser
750
)/ 5
75

108
RDSL Document Style Manager |——»| XS
{Style Sheat o Manager Processor
efe.

HTHML Browsar

US 9,262,383 B2

Page 2
(51) Int.ClL 6,185,816 Bl 2/2001 Freund et al.
6,192,362 Bl 2/2001 Schneck et al.
GO6F 17/22 (2006.01) 6,195,665 Bl 2/2001 Jarett
GOGF 17/30 (2006.01) 6,195,676 Bl 2/2001 Spix et al.
6,199,046 B1* 3/2001 Heinzlectal. 705/39
(56) References Cited 6,199,080 B1 3/2001 Nielsen
6,206,388 Bl 3/2001 Ouboter
U.S. PATENT DOCUMENTS 6,212,494 Bl 4/2001 Boguraev
6,223,189 Bl 4/2001 Steffens et al.
5.976.776 A /1994 Grady et al. 6,226,675 Bl 5/2001 Meltzer et al.
5339392 A /1994 Risberg et al. 6,240,407 Bl 52001 Chang etal.
5371675 A 12/1994 Greif ef al. 6,243,698 Bl 6/2001 Powers et al.
5423032 A 6/1995 Byrd etal. 6,249,201 Bl 6/2001 Popp et al.
431541 A 71995 Kuoedl I 6,256,030 Bl 7/2001 Berry etal.
5451708 A 10/1995 Kahn 6,266,670 Bl 7/2001 LaMarca et al.
5,519,617 A 5/1996 Hughes etal. 6,269,380 BL 772001 Terry ct al.
5530794 A 6/1996 Luebbert 6,276,991 Bl 8/2001 Kobayashi et al.
5530942 A 6/1996 Tzou etal. 6,278991 BL 8/2001 Ebert
2548749 A % $/1996 Kroenke et al. 6,295,530 Bl 9/2001 Ritchie et al.
5’551’381 A 0/1996 Losel et al. 6,308,179 B1 10/2001 Petersenet_al.
5:581:685 A 12/1996 Sakurai 6,314,424 Bl 11/2001 Kaczmarski et al.
5,581,685 A 12/1996 Koppolu et al. 6,314,562 BL 1172001 Biggerstaff
55603021 A 2/1997 Spencer of al. 6,317,750 Bl 11/2001 Tortolani et al.
5613.131 A 3/1997 Moss ot al. 6,317,783 Bl 11/2001 Fr_elshtat et al.
2701400 A 121997 Amado 6,339,767 Bl 1/2002 Rivette et al.
5706502 A 1/1998 Foley et al. 6,344,851 Bl 2/2002 Roberts et al.
5’721’847 A 2/1998 Johnson 6,345,284 Bl 2/2002 Dinkelacker
5:737:592 A 4/1998 Nguyen et al. 6,345,292 Bl 2/2002 Daugherty et al.
5737,730 A 4/1998 Shirley et al. 6,349,307 BL 22002 Chen
5748.188 A 5/1998 Hu et al. 6,351,755 Bl 2/2002 Najork et gl.
5’754’939 A 5/1998 Herz et al. 6,356,920 Bl 3/2002 Vandersluis
5’822’587 A 10/1998 McDonald et al. 6,356,961 Bl 3/2002 Oprescu-Surcobe
5838906 A 11/1998 Doyle et al. 6,366,915 Bl 4/2002 Rubert et al.
5838965 A 11/1998 Kavanagh ot al. 6,370,537 Bl 4/2002 Gilbert ct al.
5881381 A 3/1999 Yamashita ct al. 6,370,549 BL 4/2002 Saxton
5,893,100 A 4/1999 DeRose et al. 6,373,504 Bl 472002 Nielsen
2904311 A 4/1999 Jackson 6,374,274 Bl 4/2002 Myers ct al.
5’895’476 A 4/1999 Orr et al. 6,408,430 B2 6/2002 Gunter et al.
2007870 A 51999 Pan 6418433 Bl 7/2002 Chakrabarti et al.
SOII145 A 6/1999 Aroraetal. 6,421,656 Bl 7/2002 Cheng et al.
5013214 A 6/1999 Madnick et al. 6,421,822 BL 772002 Pavela
5917485 A 6/1999 Spellman et al. 6,424,980 Bl 7/2002 lizuka et al.
5920828 A 7/1999 Nouis ot al, 6,434,541 Bl 82002 Tawel et al.
5048,113 A 9/1999 Johnson et al. 6,446,048 Bl 92002 Wells ct al.
5.950,196 A 9/1999 Pyreddy et al. 6,460,059 Bl 10/2002 Wlsr_uewskl
5.053.724 A 9/1999 Lowry 6,470,349 Bl 10/2002 Heninger et al.
5956737 A 9/1999 King etal. 6.484,149 Bl 11/2002 Jammes et al.
5974413 A 10/1999 Beauregard et al. 6,493,717 Bl 12/2002 " Junkin
5983247 A 11/1999 Yamanaka et al. 6,502,101 Bl 12/2002 Vemrauskus et al.
5987469 A 11/1999 Lewis et al. 6,502,112 Bl 12/2002 Baisley
5999044 A 12/1999 Lipkin 6,505,246 Bl 1/2003 Land et al.
6006242 A 12/1999 Poole et al. 6,507,856 Bl 1/2003 Chenet al.
6,009.436 A 12/1999 Motoyama et al. 6,510,468 Bl 1/2003 Hayne ..o, 709/246
6,009,443 A * 12/1999 KaWamura 715/246 6,513,043 BL 172003 Chan et al.
6.014.643 A 1/2000 Minton 6,519,617 Bl 2/2003 Wandc_erskl et al.
6’014’661 A 1/2000 Ahlberg et al. 6,529,217 Bl 3/2003 Maguire, III et al.
6’026’388 A 2/2000 Liddy etal. 6,535,896 B2 3/2003 Britton et al.
6’026’397 A 2/2000 Sheppard 6,542,912 B2 4/2003 Meltzer et al.
6:034:676 A 3/2000 Egan et al. 6,581,068 Bl 6/2003 Bensoussan et al.
6,038,574 A 3/2000 Pitkow et al. 6,591,272 B1 - 7/2003 Williams
6052710 A 472000 Saliba ot al 6,594,653 B2 7/2003 Colby et al.
6058385 A 52000 Kozaetal. 6.615.258 BL 9/2003 Barry et al.
6.065012 A 52000 Balsara et al. 0,021,505 BL 972003 Beauchamp et al.
6065026 A 52000 Cornelia etal. 6,626,957 BL 9/2003 Lippert et al.
6075530 A 62000 Lucasetal 6,629,004 Bl 9/2003 Colby et al.
0092036 A 72000 Hamann 6,629,135 Bl 9/2003 Ross, Jr. etal.
6097888 A §2000 Simonyi 6,631,357 Bl 10/2003 Perkowski
6’108,662 A 8/2000 Hoskins et al. 6,631,402 Bl 10/2003 Devine et al.
112240 A /7000 Jois etal 6,635,089 Bl 10/2003 Burkett ct al.
6.121.924 A 0/2000 Meck of al. 6,640,234 Bl 10/2003 Coffen et al.
6,125,391 A 9/2000 Meltzer et al. 6,643,633 B2 11/2003 Chau et al.
6,134,563 A 10/2000 Clancey et al. 6,667,747 Bl 12/2003 Spellman et al.
6,148,330 A 11/2000 Puri et al. 6,714,201 Bl 3/2004 Grinstein et al.
6,160,549 A 12/2000 Touma et al. 6,718,516 Bl 4/2004 Claussen et al.
6,167,409 A 12/2000 DeRose et al. 6,721,736 Bl 4/2004 Krugetal.
6,173,272 Bl 1/2001 Thomas ct al. 6,745,384 Bl 6/2004 Biggerstaff
6,173,284 Bl 1/2001 Brown 6,772,139 Bl 8/2004 Smith, III
6,173,316 Bl 1/2001 De Boor et al. 6,789,252 Bl 9/2004 Burke ot al.
6,185,573 Bl 2/2001 Angelucci et al. 6,862,710 Bl 3/2005 Marchisio

US 9,262,383 B2
Page 3

(56) References Cited
U.S. PATENT DOCUMENTS

6,876,930 B2 4/2005 Murray et al.
6,886,005 B2 4/2005 Davis
6,910,017 Bl 6/2005 Woo et al.
6,912,293 Bl 6/2005 Korobkin
6,920,608 Bl 7/2005 Davis
6,993,527 Bl 1/2006 Raman et al.
7,020,862 Bl 3/2006 Alfke et al.
7,020,882 Bl 3/2006 Lewallen
7,152,116 B1 12/2006 Austin et al.
7,181,438 Bl 2/2007 Szabo
7,249,328 Bl 7/2007 Davis
7,340,534 B2 3/2008 Cameron et al.
7,401,076 B2 7/2008 Davis
7.421,648 Bl 9/2008 Davis
7,512,875 B2 3/2009 Davis
7,565,397 B2 7/2009 Hodjat et al.
7,650,355 Bl 1/2010 Davis
7,660,874 Bl 2/2010 Meltzer et al.
7,801,896 B2 9/2010 Szabo
8,006,177 Bl 8/2011 Meltzer et al.
8,185,615 Bl 5/2012 McDysan et al.
8,185,815 Bl 5/2012 Feira et al.
8,185,816 B2 5/2012 Davis
8,370,362 B2 2/2013 Szabo
8,375,116 B2 2/2013 Meltzer et al.
8,489,982 B2 7/2013 Davis
8,959,196 B2 2/2015 Meltzer et al.

2001/0013030 Al
2001/0018687 Al
2001/0018694 Al
2001/0020237 Al
2001/0049687 Al
2002/0007383 Al
2002/0023141 Al
2002/0035501 Al
2002/0052954 Al
2002/0062451 Al
2002/0073115 Al
2002/0091696 Al
2002/0165872 Al
2002/0168664 Al
2002/0198985 Al
2003/0041077 Al
2003/0078683 Al
2003/0078883 Al
2003/0140045 Al
2003/0167213 Al
2003/0217047 Al
2005/0005266 Al
2005/0086126 Al
2005/0086216 Al
2005/0182709 Al
2005/0187954 Al
2005/0198042 Al
2006/0168335 Al
2007/0156677 Al
2007/0219933 Al
2008/0028340 Al
2008/0282139 Al
2009/0083613 Al
2009/0083619 Al
2009/0089657 Al
2010/0004874 Al
2010/0100814 Al
2010/0299239 Al
2010/0332414 Al
2010/0332583 Al 12/2010 Szabo

2013/0159845 Al 6/2013 Meltzer et al.

OTHER PUBLICATIONS

8/2001 Colby et al.
8/2001 Gonzalez et al.
8/2001 Iwamoto et al.
9/2001 Yarnall et al.
12/2001 Russell
1/2002 Yoden et al.
2/2002 Yen et al.
3/2002 Handel et al.
5/2002 Polizzi et al.
5/2002 Scheidt et al.
6/2002 Davis
7/2002 Craft et al.
11/2002 Meltzer et al.
11/2002 Murray et al.
12/2002 Fraenkel et al.
2/2003 Davis et al.
4/2003 Hartman et al.
4/2003 Stewart et al.
7/2003 Heninger et al.
9/2003 Jammes et al.
11/2003 Marchisio
1/2005 Datig
4/2005 Patterson
4/2005 Davis
8/2005 Belcsak et al.
8/2005 Raman et al.
9/2005 Davis
7/2006 Hodjat et al.
7/2007 Szabo
9/2007 Datig
1/2008 Davis
11/2008 Davis
3/2009 Davis
3/2009 Davis
4/2009 Davis
1/2010 Rzhetsky et al.
4/2010 Meltzer et al.
11/2010 May
12/2010 Mead et al.

Advisory Action from U.S. Appl. No. 11/819,125, dated Sep. 3,2013.
Final Office Action from U.S. Appl. No. 11/819,125, dated Mar. 14,
2013.

Non-Final Office Action from U.S. Appl. No. 11/819,125, dated Sep.
28, 2012.

Advisory Action from U.S. Appl. No. 11/819,125, dated Aug. 2,
2011.

Final Office Action from U.S. Appl. No. 11/819,125, dated Apr. 12,
2011.

Final Office Action from U.S. Appl. No. 11/819,125, dated Dec. 14,
2010.

Non-Final Office Action from U.S. Appl. No. 11/819,125, dated Jul.
14, 2010.

Notice of Allowance from U.S. Appl. No. 10/980,266, dated Mar. 17,
2008.

Non-Final Office Action from U.S. Appl. No. 10/980,266, dated Sep.
12, 2007.

Final Office Action from U.S. Appl. No. 10/980,266, dated Mar. 19,
2007.

Non-Final Office Action from U.S. Appl. No. 10/980,266, dated Sep.
5, 2006.

Non-Final Office Action from U.S. Appl. No. 10/052,250, dated Oct.
2,2014.

Final Office Action from U.S. Appl. No. 10/052,250, dated Feb. 20,
2014.

Non-Final Office Action from U.S. Appl. No. 10/052,250, dated May
22,2013.

Decision on Appeal from U.S. Appl. No. 10/052,250, dated May 1,
2012.

Examiner’s Answer from U.S. Appl. No. 10/052,250, dated Nov. 24,
2008.

Final Office Action from U.S. Appl. No. 10/052,250, dated Nov. 1,
2007.

Non-Final Office Action from U.S. Appl. No. 10/052,250, dated Jun.
11, 2007.

Final Office Action from U.S. Appl. No. 10/052,250, dated Nov. 2,
2006.

Non-Final Office Action from U.S. Appl. No. 10/052,250, dated May
18, 2006.

Advisory Action from U.S. Appl. No. 10/052,250, dated Dec. 19,
2005.

Final Office Action from U.S. Appl. No. 10/052,250, dated Aug. 23,
2005.

Non-Final Office Action from U.S. Appl. No. 10/052,250, dated Mar.
22, 2005.

Fulton, “Ten Minute Guide to Excel 97,” Dec. 12, 1996; http://
techbus.safaribooksonline.com/print?xmlid=0-7897-1020-
X%2Fchl7levlsecl>.

Hoffman et al., XBRL Taxonomy Financial Reporting for Commer-
cial and Industrial Companies, US GAAP, Jul. 31, 2000, pp. 1-12.
XBLR for Financial Statements Questions and Answers, Apr. 26,
2000, 6 pages.

Harding, W. E., “Finally, Business Talks the same Language,” Aug.
2000, 5 pages.

Arnold, K. et al., “The Java Programming Language, Second Edi-
tion,” The Java Series, 3rd Printing, Sep. 1998, pp. 466 pages.
Gosling, J. etal., “The Java Language Specification,” The Java Series,
First printing, Aug. 1996, 853 pages.

Harold, E. R., “XML: Extensible Markup Language,” IDG Books
Worldwide, Inc., 1998, 458 pages.

Bruce Hallberg et al., “Special Edition, Using Microsoft. RTM.
Excell 97, Bestseller Edition, ” Que.RTM. Corporation (1997).
Elliotte Rusty Harold, “XML .TM. Bible,” IDG Books Worldwide,
Inc., An International Data Group Company (1999).

David Megginson, “Structuring XML Documents,” Prentice Hall
PTR, Upper Saddle River, NJ (1998).

Copending U.S. Appl. No. 09/573,419 entitled “Tree View for Reus-
able Data Markup Language,” filed May 18, 2000.

Copending U.S. Appl. No. 09/573,778 entitled “Reusable Data
Markup Language,” filed May 18, 2000.

Extensible Business Reporting Language (XBRL) 2.0 Specification,
(Dec. 14, 2001), Editors: Luther Hampton, e-Numerate; David vun
Kannon, KPMG LLP; pp. 1-42.

Information on Exchange Rates of Africa, Asia, and Australia, web
site: http://eh.net/hmit/exchangerates/infoafr.htm, pp. 1-3, 2002 by
EH.NET, downloaded Oct. 19, 2006.

Microsoft Press Computer Dictionary, Third Edition, Microsoft
Press, p. 511 (1997) (3 pages).

US 9,262,383 B2
Page 4

(56) References Cited
OTHER PUBLICATIONS

Online Ohio CPA Newsletter, A Monthly Electronic Publication of
the Ohio Society of Certified Public Accountants; Aug. 2000, vol. 1,
No. 14 (7 pages).

Order of Magnitude (online Wikipedia article), http://en.wikipedia.
org/wiki/Orders.sub.--of.sub.--magnitude>, 2006 Wikimedia Foun-
dation, Inc. pp. 1-4, downloaded Oct. 19, 2006.

Tools [online], extensible Business Reporting Language, [retrieved
on Aug. 13, 2002]. Retrieved from the Internet <URL: http://www.
xbrl.org/Tools.htm> (5 pages).

XBRL Essentials, (A nontechnical introduction to the extensible
Business Reporting Language, the digital language of business), Jan.
2001, Charles Hoffman, CPA; Carolyn Strand, PhD, CPA, (AICPA),
pp. 1-17.

XBRL Home Page [online], extensible Business Reporting Lan-
guage, [retrieved on Aug. 13, 2002]. Retrieved from the Internet
<URL: http://www.xbrl.org> (3 pages).

XBRL Technical Specification [online], extensible Business Report-
ing Language, [retrieved on Aug. 13, 2002]. Retrieved from the
Internet <URL: http://'www.xbrl.org/TR/2001/default.htm> (1
page).

The XML Cover Pages, Extensible Business Reporting Language
(XBRL), (1994-2002), Robin Cover, pp. 1-18.

Berkley et al., The Road to Better Business Information Making a
Case for XBRL, Winter 2000, Microsoft, pp. 1-13.

Blattner, Special Edition Using Microsoft Excel (R), May 3, 1999 (C)
Que Corporation “Adding a Secondary Axis to the Chart” (3 pages).
Gilster, Paul, Finding It on the Internet: The Internet Navigator’s
Guide to Search Tools & Techniques, 2.sup.nd edition (1996) (3
pages).

Hamscher et al., Extensible Business Reporting language (XBRL)
Specification, Jul. 31, 2000, XBRL Organization, pp. 1-27.

Charles Hoffman and Carolyn Strand, “XBRL Essentials, A Non-
technical Introduction to eXtensible Business Reporting Language
(XBRL), the Digital Language of Business Reporting,” pp. 1-148
(2001).

Jon Rienstra, “Using Excel. RTM. in Chemistry,” http://www.asa3.
org/chemistry/computers.sub.--in.sub.--chemistry/excel.su- b.--tips.
html (1995) (4 pages).

Simon St. Laurent, “Why XML?,” http://www.simonstl.com/ar-
ticles/whyxml.htm (1998) (5 pages).

Suzuki et al., “Managing the Software Design Documents With
XML,” ACM Proceedings of the 16th Annual International Confer-
ence on Computer Documentation, Sep. 1998, pp. 127-136.
Copending U.S. Appl. No. 11/819,125 entitled “Tree View for Reus-
able Data Markup Language,” filed Jun. 25, 2007.

Copending U.S. Appl. No. 11/819,126 entitled “Reusable Data
Markup Language,” filed Jun. 25, 2007.

Information on Exchange Rates of Africa, Asia, and Australasia, web
site: <http://eh.net/hmit/exchangerates/infoafrhtm>, pp. 1-3, 2002
by EH.NET, downloaded Oct. 19, 2006.

Bruce Halberg, “Special Edition, Using Microsoft RTM. Excel 97,
Bestseller Edition,” Que RTM. Corporation (1997).

Bederson, et al., “Pad++: A Zooming Graphical Interface for Explor-
ing Alternate Interface Physics”, UIST 94, Nov. 2-4, 1994, 10 pages.
Davis, “The Information System Consultant’s Handbook: Systems
Analysis and Design”, Chapter 51, copyright 1999 by CRC Press
LLC, 12 pages.

“ProQuest Information and Learning—0789717298—Special Edi-
tion Using Microsoft RTM. Excel 2000 Jan. 23, 2008 http://
proquest.safaribooksonline.com/0789717298, 3 pages.

Copending U.S. Appl. No. 09/573,780 entitled “Reusable Macro
Markup Language”, filed May 18, 2000.

Copending U.S. Appl. No. 11/819,126 entitled “Tree View for Reus-
able Date Markup Language”, filed Jun. 25, 2007.

Rienstra, Jon, “Using Excel RTM.in Chemistry” Oct. 1995, http://
www.asa3.org/chemistry/computers__in_ chemistry/excel _tips.
html.

Microsoft Press Computer Dictionary, Third Edition, (C) 1997
Microsoft Press, p. 511.

St. Laurent, Simon, “Why XML?” (C) 1998 http://www.simonstl.
com/articles/whyxml.htm.

Gilster, Paul, “Finding It on the Internet: The Internet Navigator’s
Guide to Search Tools & Techniques,” 2.sup.nd edition (1996), 379
pages.

Halberg, Bruce, et al., “Special Edition, Using Microsoft. RTM.
Excel 97, Bestseller Edition,” Que. RTM. Corporation (1997).
Harold, Elliotte Rusty, “XML.TM. Bible,” IDG Books Worldwide,
Inc., An International Data Group Company (1999).

Megginson, David, “Structuring XML Documents,” Prentice Hall
PTR, Upper Saddle River, NJ (1998).

Glister, Paul, Finding It on the Internet: The Internet Navigator’s
Guide to Search Tools & Techniques, 2.sup.nd edition (1996), 379
pages.

U.S. Appl. No. 60/135,525, filed May 21, 1999.

U.S. Appl. No. 60/183,152, filed Feb. 17, 2000.

Notice of Allowance from U.S. Appl. No. 09/573,780, dated Oct. 29,
2009.

Non-Final Office Action from U.S. Appl. No. 09/573,780, dated Apr.
1, 2009.

Non-Final Office Action from U.S. Appl. No. 09/573,780, dated Sep.
25, 2008.

Final Office Action from U.S. Appl. No. 09/573,780, dated Feb. 7,
2008.

Non-Final Office Action from U.S. Appl. No. 09/573,780, dated Aug.
17, 2007.

Final Office Action from U.S. Appl. No. 09/573,780, dated Mar. 2,
2007.

Non-Final Office Action from U.S. Appl. No. 09/573,780, dated Sep.
21, 2006.

Final Office Action from U.S. Appl. No. 09/573,780, dated Jun. 13,
2006.

Non-Final Office Action from U.S. Appl. No. 09/573,780, dated Dec.
28, 2005.

Advisory Action from U.S. Appl. No. 09/573,780, dated Jul. 7, 2005.
Final Office Action from U.S. Appl. No. 09/573,780, dated Mar. 28,
2005.

Non-Final Office Action from U.S. Appl. No. 09/573,780, dated Apr.
23, 2004.

Notice of Allowance from U.S. Appl. No. 09/573,778, dated May 1,
2008.

Final Office Action from U.S. Appl. No. 09/573,778, dated Oct. 3,
2007.

Non-Final Office Action from U.S. Appl. No. 09/573,778, dated Apr.
13, 2007.

Final Office Action from U.S. Appl. No. 09/573,778, dated Oct. 24,
2006.

Non-Final Office Action from U.S. Appl. No. 09/573,778, dated May
31, 2006.

Non-Final Office Action from U.S. Appl. No. 09/573,778, dated Dec.
16, 2005.

Advisory Action from U.S. Appl. No. 09/573,778, dated Sep. 27,
2005.

Final Office Action from U.S. Appl. No. 09/573,778, dated Jun. 2,
2005.

Non-Final Office Action from U.S. Appl. No. 09/573,778, dated Jan.
5, 2005.

Restriction Requirement from U.S. Appl. No. 09/573,778, dated Sep.
16, 2004.

Final Office Action from U.S. Appl. No. 12/222,751, dated Mar. 31,
2014.

Advisory Action from U.S. Appl. No. 12/222,751, dated May 15,
2013.

Non-Final Office Action from U.S. Appl. No. 12/222,751, dated Jul.
11, 2013.

Final Office Action from U.S. Appl. No. 12/222,751, dated Jan. 7,
2013.

Non-Final Office Action from U.S. Appl. No. 12/222,751, dated May
29, 2012.

Final Office Action from U.S. Appl. No. 12/222,751, dated Jan. 25,
2012.

Non-Final Office Action from U.S. Appl. No. 12/222,751, dated Aug.
11, 2011.

US 9,262,383 B2
Page 5

(56) References Cited
OTHER PUBLICATIONS

Notice of Allowance from U.S. Appl. No. 12/222,750, dated Mar. 15,
2013.

Final Office Action from U.S. Appl. No. 12/222,750, dated Aug. 11,
2011.

Non-Final Office Action from U.S. Appl. No. 12/222,750, dated Feb.
14, 2011.

Notice of Allowance from U.S. Appl. No. 12/222,752, dated Feb. 2,
2012.

Non-Final Office Action from U.S. Appl. No. 12/222,752, dated Aug.
5,2011.

Notice of Allowance from U.S. Appl. No. 09/573,413, dated Feb. 8,
2005.

Non-Final Office Action from U.S. Appl. No. 09/573,413, dated Aug.
27, 2004.

Notice of Allowance from U.S. Appl. No. 11/119,963, dated Dec. 15,
2008.

Non-Final Office Action from U.S. Appl. No. 11/119,963, dated Jun.
27, 2008.

Final Office Action from U.S. Appl. No. 11/119,963, dated Feb. 5,
2008.

Non-Final Office Action from U.S. Appl. No. 11/119,963, dated May
29, 2007.

Notice of Allowance from U.S. Appl. No. 09/573,419, dated Mar. 26,
2007.

Advisory Action from U.S. Appl. No. 09/573,419, dated Feb. 20,
2007.

Final Office Action from U.S. Appl. No. 09/573,419, dated Oct. 19,
2006.

Non-Final Office Action from U.S. Appl. No. 09/573,419, dated May
10, 2006.

Advisory Action fromU.S. Appl. No. 09/573,419, dated Jan. 5, 2006.
Final Office Action from U.S. Appl. No. 09/573,419, dated Sep. 20,
2005.

Non-Final Office Action from U.S. Appl. No. 09/573,419, dated Apr.
7,2005.

Advisory Action from U.S. Appl. No. 09/573,419, dated Jan. 26,
2005.

Final Office Action from U.S. Appl. No. 09/573,419, dated Oct. 26,
2004.

Non-Final Office Action from U.S. Appl. No. 09/573,419, dated Mar.
11, 2004.

Non-Final Office Action from U.S. Appl. No. 09/573,419, dated Oct.
8, 2003.

Restriction Requirement from U.S. Appl. No.09/573,419, dated Jun.
18, 2003.

Final Office Action from U.S. Appl. No. 11/819,126, dated Mar. 24,
2014.

Final Office Action from U.S. Appl. No. 11/819,126, dated Oct. 21,
2013.

Non-Final Office Action from U.S. Appl. No. 11/819,126, dated Feb.
27,2013.

Final Office Action from U.S. Appl. No. 11/819,126, dated Nov. 17,
2010.

Non-Final Office Action from U.S. Appl. No. 11/819,126, dated Jun.
9,2010.

Final Office Action from U.S. Appl. No. 11/819,125, dated Oct. 22,
2014.

Final Office Action from U.S. Appl. No. 10/052,250, dated Jul. 21,
2015.

* cited by examiner

US 9,262,383 B2

Sheet 1 of 40

Feb. 16, 2016

U.S. Patent

801
SMaIA

DI

C

(srewwuoy ajy

Auew) podx3g

DO:MEQE:UOD

ypodeay
lamaIn eleQ
MBINBBI] TNay
l9ayspeaidsg
yeyd

C
C
C
_C

901

¥0l

juswnooQg
eleq INad

c0l

US 9,262,383 B2

Sheet 2 of 40

Feb. 16, 2016

U.S. Patent

€0¢

8E2

¢ ol -

00c

ebeioyg
aseqeje(]

9tc

lanleg
aseqele(

yee

5

822 WX JuswdojensQ
2Jemyog 0I0eN TAINY

0g€¢ @seqejeq bulsixg

202 NdD 9¢e

oseqejeq abew

90¢ @ebelolS Alepuodss

e

Aeuy ysiq

801 SMIIA

Gezz suonedddy uj-Bnid JWay

yeg_euibug yaseas JWX/ NG

cee

5

Zgg___Joupd 19ayg silis 1Say

Ogg____J0lp3 Juswnood JWad

8lz _ Jeniag Juawnooq TNQY

9l¢ Jeneuno juawnooq JnNayd

18nI8S gap

901 188yS slAIS 1SaY
$OI — WUSWnoog oloeN TNNY
20T TIumSo TNAY
00T TOM3TA BTeq
¥0e
Aowspy urep

cle
induy

{

ote
Aeydsi(g

l0e

U.S. Patent

230

Existing
Database

(SQL Server,
Oracle, etc.)

Feb. 16, 2016

Sheet 3 of 40

US 9,262,383 B2

226

RDML
Image
Database

228
S

RMML Macro
Software

218
S

RDML
Document
Server

104
5

RMML Macro

Development
Kit

224
S5

RDML/XML
Search
Engine

100

My

RDML Data

Document

"

225
5

|
|
]

Main 299

components ;

220 RDML
Document RDSL Style
j21 6 Editor Sheet Editor
RDML
N—p Document
Formatter ;1 06
A A
| 102
N
RDML RDSL Style
Document Sheet

Viewer

Various RDML
Plug-In
Applications

FIG. 3

US 9,262,383 B2

Sheet 4 of 40

Feb. 16, 2016

U.S. Patent

80y

g1¢c ~a

90¥

sweig appm| [

SNeIS Yo

_\ mEE_mci 185Wwa)sur /_ saseqeleq ,_

\ |1
pasnbay Bumew.o) [aqe|
sixe-A osly ‘sjaayspealds

spuesnoyy ul ¢ (ott'4) ‘Ot # *'{ PAINQUIUCD SNOBUR||ISISIA oy ‘sjodal ‘maiAsal) Ul
spuesnoy] ul § (ops's) ‘One's QNS SNOPJIBZEH ‘S3LI9AC09Y ooy Jeadde |iim sisquinu suwa) auj|
spuesnouL Ui g | (os's) ‘o' frewogaiosia | 0'ge SId) Moy Joj aleidusa . Jeuod
spuesnoyl Ul $ | (O#'H) ‘OmEH “aplopsed Joj se8) Buisusdr | 0'9¢
P - &) aess O
spuesnoul UIg | (Q##'#H) ‘OMH un} jsng) [essusg Jojoadsul | 0'vE
Spuesnoy) ul ¢ (O#t's) ‘om's asuodsaids 0 | 0z - ansesy O
spuesnoyj ul § (0#t's) ‘opn's “ei0}s punoBispun Buesy | 00¢ soypon O
spuesnoyl uig | (O##'#) 0% jueibuoN [082 5
spuesnoy Ul § (Ous's) ‘omt'e *-adns asue)sqns snopiezeH | 0°9g apmbey O
spuesnoyl Ul g | (O##'#) 0mE'# Aojepuen | 0y wun O
spuesnoyl uig | (Om#H) ‘Om's | oneownso sof puny bumjonay | 02 uoispald O
spuesnoyj Ul ¢ aﬁuﬁ woﬂs”* "8 snopiezey ay) o) juswhed | 002 wonduosag 1 O
spuesnoyl ulg [(Om'%) Os'# juelbuoN | 0’8l
spuesnoyl ulg | (O'H) o | ueuen opoedsul el josolO | 09 sajou004 N O
spuesnoul Ui g | (0H'H) ‘O#'# wein | 0l [(%0) %l Wated 0} uoeey O
spuesnoyl ulg | (oM'H) ‘o't “"8jeqe pue jofuod uolniiod | 071 5 ol Pwio] @
Y : [(%00°0) %] Jeuliod
spuesnoyl wig [(Oa#'s) 0 # ABojouyosy pue souslds | 004 0]
spuesnoy uig | (omw's) ‘osn JueiBuoN (000)] ere O
spuesnoy, ulg [(Om##) ‘O # Aleuona.osiq lool apL sy A O
Spuesnoy) Ut g | (0##'H) ‘O # "8)eqe pue [04)u0d uoiniod [(o##'#):0%'#) fiobaren 11 O
A~ spuesnoy| ui ¢ (om's) ‘omt's By uoN99)014 [PIUSWILIOIIALT .
300 SIXE A 1ewIo; on (omaiomts| 5] apLn O
:alqe L ay; dn yiew :uondo ue 109js JUBWIBIIMY Ue Jo3jeg
umog Adog I sinejeq uwinjo 4 Il sinejeq v 4 Il al4 uado |
disH s|00 MaIA a4
lepeunoS ejleq TNAY

144

> ¢0p

¥ "Old

US 9,262,383 B2

Sheet 5 of 40

Feb. 16, 2016

U.S. Patent

205

> ¥0S

912
sniejs m_%_s__ sniels uan \x
_ swajjaun ,_ 195WsysUIn /_ mommnﬂmn_\,_.
S L BA YWY Wl guuy UUHEYSILILPY S URIDIOA JU juoy
) uonepodsuen quo |wpl auoq Abrau7 Jo 1dag
| TBSS QWO |WpI auoq uonensiulupy ALndsg [e1oos
1 s1dI80as"quio T jwipl auoQ 51d1908Yy [BUBLILIBADE)
| TESEUTQWIO|WpI auoq “Reqsiliwpy aoeds pue JyneucIsy [uoleN
17 Joge| quo|wp) auog Joge jo 1dag
| leoipnquioTjwp auoQ youelg |eoipnp
17PNy quoT|wpd auoq juswdojanaq uealn pue Buisnoy Jo ydseq
| "esbquojwpl auoQ UOHEASIUIWPY S8OIAISS BJauss)
| ~d05™quo|Wpl auoq JUSPISald 3Y) JO 3AUYQ SAINIXT
|~ 80J8WWos~ quio™ jup) auoQ ansiawwon jo jdaq
L}osse RIS W) auoQ uoneoyness luswobeuep jJassy — aep allles
Liesing euws Jwpl auog MO USeD — a0 ssauisng AisIanun
| TSauloWsap” |Wp. auoQg 13Mag g Jajep Saulop sag
} W jwpl auoQ Auedwog) abebpoyy yead
| ~ABisus™quojwpl auoQ ABiau7 jo 1daq
v JSBWIST|Wp aueq JUBWSBIS SWOdU| — S| 3leS
a1 o0INGaY smeys Sk oop
“"UO ¥JOM 0} SJUaWN20Q JNAQY
o |
805 :mEBH_?BUoSE_ En eean
/\l ._mumo__uoou_EE_ :8|qe . UOIBUSINDCQ
906 41 :me_o%u%ounn__ HN voReUsWoCg
_ umog Adog I sjINejaq uwInjog i I sIneRa Iy i3 Il aj4 uado |
dipH sjooL MIIA 3|4

Xl

layjewo ejeq TINGgY m_ m o_u_

U.S. Patent

Feb. 16, 2016 Sheet 6 of 40

(START)

User submits data request
to web server and RDML
data server via the viewer

A

RDML server queries the
databases

The databases return the
results to the server

A

The server creates an
RDML document

A

The server returns the
RDML document to the web
server and on to the viewer

~"610

US 9,262,383 B2

US 9,262,383 B2

Sheet 7 of 40

Feb. 16, 2016

U.S. Patent

Ruk]

¢ — 1 | | 19943 sIAIS)
Jasmaig TNLH 10559001 | Jabeuey alfis BLUNJ0QJ TNINY

N Lowsx |7 Juslinoog 1SaY /\/
9eL Y 0L v0l
6L V\
06/

A

PoBla W BUNO0Q TAWA
Jasq [ealydess Y, Jaydepy 10BN 4— /\/
h 4 yol
51 S
vel JaBeuepy csoep 09/
4 0eL U0 TN
g 1awiojsuel | /\/
anfeA-X y01
L 1ebBeuBy 8101004 (syo8lq0 _
9zl M| Wwoglewois | 0Ll
Lom_w,woomha Jasied X a0E8)U| O10BN
8z. . 1ebeuepy /\/ /\/
A 19ayspealds %] A%\ 86/
198yspeaidg 90/
J05$8001d 49peay apeay
el Jobeuepy 2 Lot Buiogy |
274 M
0z 96/
1sbeuep peyn
uoiuyag adAy
% 0 N JUBWIND0Q TNAY
9L rH M /(/
ejeq Leyp /N A 201
S V. 'Ol

U.S. Patent Feb. 16, 2016 Sheet 8 of 40 US 9,262,383 B2

Text
Document Object / Ou.tpu.t Object
) Application
Process P Storage
("View")
Graphical
User Third-Party Input/ ‘_ Program
Interface Software Output Flow ——l
"GUI" Component Process

FIG. 7B

U.S. Patent

Feb. 16, 2016 Sheet 9 of 40

{ START)

h 4

802

Document reader finds
and receives document

A 4

804

XML parser parses
text

A

806 __~

RDML processor
processes the text into an object

A 4

808 __~

X-value transformer 810 type
checks and manipulates x-values

810 __~

Primary data store 812 stores active
objects of the same type for display

A

812 __~

Views display active objects
stored in primary data store

END

FIG. 8

US 9,262,383 B2

US 9,262,383 B2

Sheet 10 of 40

Feb. 16, 2016

U.S. Patent

way au| <
826
sjou < 1es7aj0u l— yuif < 188Ul <
96 456 816 707
qul 1asyuy| [\ SSEP | < 1S SSeR 1| e \
N w 0e6 M
Ze6 0Z6 9¢6
X ejep 198 w8y au|
Kelep — \
¥26 \
43¢ 906
~ 3| < Jasyul| <
X"Bjep le—
NNN 916 V\
9c5 \ 916 0PI
AUl < 1asyuy < M
&b 206
M OjUITJ0BOD [« \ Sw8) asuadl| |
816 16 ~)
\ OUIoBIU0D | 82IN0S00p|Wp) [«
8l6 Z16
ojuITjoBIU0D | 80.nos~Bumew.o) « Japesyoop|up) (&
M v\ 806
816 016 W \N
W OUIBJI00 |¢ oonosTelep [« 06
816 6 "9l

U.S. Patent

Feb. 16, 2016

Start

Y

Sheet 11 of 40

Locate Documents

L~ 1002

US 9,262,383 B2

v

Select Document to be
Transformed

o~ 1004

A 4

Access Line Item

"~ 1006

v

Determine Desired
Transformation

o~ 1008

Access Unit, Magnitude,
Modifier, Scale, Measure,

o~ 1010

and Adjustmfnt Attributes

Determine Conversion
Factors for Hach Attribute

>~ 1012

Multiply the Conversion
Factors to Manipulate the
numbers of the Document or
Line{ltem

~~1014

A

Display Transformed
Document crn Line Item

~1016

1018

Another

Yes

Line Item to be
ransformed?

1020

Another

Yes

Document to be
ransformed?

FIG. 10

U.S. Patent Feb. 16, 2016 Sheet 12 of 40 US 9,262,383 B2
(START)
Y
1102 __~ X-value transformer
receives a new document
A
1104 __~ Determines type of active
documents in primary data store
1108
New v asd
1106 object is same es Addtocurrently |
type as active "| active documents
documents
1110~ Notify user
1114
Y o
1112 User chooses to ©s Reject the
reject object? document

User chooses to
erase current
active?

1116

1118

yasd

Erase current
active documents

1120
) 4 /\/

Insert new document

1122
~ as standby object

Store new
document

y

END

FIG. 11

US 9,262,383 B2

Sheet 13 of 40

Feb. 16, 2016

U.S. Patent

| | od Ax £:oj] auog
[1o9yspeasdsy ssjoujood Y a1 ey) %mmsem N ._.E
4 4
S0z 6C v9'8¥¢C S.mwv._w I v9'9ee 0992 Ov'SET xopu| xapu| Ayen
/L./ 8¢ ¥O8¥C 1¥'98¥C ¥9'982 09'92Z OF'GEZ Uoul bs Jad spunog mma::oiow«@
¥9'LC 1780 ¥9'92 09°9¢ A4 B66L/1/01 40 SY
HsaL AX SWeN s|qel &
moy [obesony [wng [syury [ziuwod [1iued [oued | sin| | waj| sun
X LA nseL Axd
ammjesadwa |
VA oy Sy LA %4 (4 A4 Ov 6E 8¢
' ' ' y ¥ ' ' ' 000
0001,
T
3
=3
=3
0002
. . : " 00°0€
$0Z1
6661/L/0) 4O SV : Buiwsem 1eqoi9
A WipJ- |38y AX\Sa|yaSMOIGIUPH/IWP KV DV:BIId] juswnsog eleq jo N
swoH dojs premioq doeg adA] esei] saowsy ppy uselog Adon esoy uedp
A WNWIXE
e ® & o A &8 B @ 3 @® O [wnucei] ax|
dioH MOPUIAR S|OCT SejuoAed Meyd MoIA WpJ ofid
MEIN| omain Eleg Ny WY

02L

hmoﬁ

Vel OId

US 9,262,383 B2

Sheet 14 of 40

Feb. 16, 2016

U.S. Patent

902}

y0Z1 -

s 9 | E | | auog
| 188yspeaids [SSJoUj004 EJ 93i] Heyd (Y Josmoig JWIHI
Qi [»
D T /A V! A 4 ¥9'9£7 09'922 0F'SE2 Xapu| xapuj A1Le|)
vO8YZ LU9BY'T C y99¢Z 09'97¢ Op'GEZ youl bs Jad spurnod 82:5;3@ 022
L ¥z Wiz ¢ ¥992 0992 Ob'GZ Apiwiny 6661/1/01 JO Sy *
1159 AX BWeN djge| 2@
moy |ebessny [wng Teyun Jzod Jyuog Jouod | spn | | way| auf
X 8 £ nsat AXEH
001 06 08 0/ 09 08 or_ A
\ A 000
0000}
>2021
00002
h\ d 00°00¢
666L/L/0L 10 SY Buwiep egoro Y
| wipt AX"4}53)/5914/19SMOIGIUPN/|UWPY/-D:311]] juswnooq eleq Jo 79N
__’> __ >_Eé_xm_a_ >x7 adf| eseq saowey ppy swod doig psemiod yeg usawg Adon es0)n usdp
" a8 & a & ® & o B 3 a8 o
deH MOpUy S|OCL SsjIoAE] Jeu] MIRA)P a3
)| Jomaia eleg Nad WY
a¢i old

US 9,262,383 B2

Sheet 15 of 40

Feb. 16, 2016

U.S. Patent

co]| | WOAXT] (3| auog
| 198yspeasds [Y ssjoujoo4 [Y 981} fliey) EZ Jasmoig JWIH T u
4 b
9021 — I 0zl
4 v98v LY98YZ 2 ¥9'9¢¢ 09'9¢¢ 0O¥'GEC you! bs Jad spunog 6661/1/01 JO SY MM
3 ¥9'L8 \Wwale ¢ ¥99C 099¢ 0¥'se Apruny 6661/1/0} JOSY &
: 1188} AX ‘BWEN 3[qe1 3
moy [abeisny Jwng [syun [ziuod |iwued [owod | swn| | way| sur
5 2P HsaL AX O
......... V.N.-2 J
00l 06 08 0L 09 05 oF .
* * i 000
0000}
$0z) < 202}
00002
: 00'00€
Buswem leqoro J
A WpJ AX piS3Y/S2|/IosmoIg WPH/IWPY/ D 14| uswnoog eled J0 14N
adf) oses3 enowey ppy i swoH dojg piemiod xoeg usalog Adop esopy usdo
wnuwixe
2 Towwel| oy '8 @8 B @ ® 6 O @B 9 &
dgH mopum S|00] SeOAE] peyD MOIR EREE
lamaIA el TNQU

U.S. Patent Feb. 16, 2016 Sheet 16 of 40 US 9,262,383 B2

Primary Data Store

~ 712

1302 1304

RDML Doc RDML Lineltem

FIG. 13

US 9,262,383 B2

Sheet 17 of 40

Feb. 16, 2016

U.S. Patent

9021 ~

1744

[;smoig ILH | soi0ew | 1eaysereq | sejowood | meinsa L

|IE

866'79€'€E

9eLTHL)
0
0

868'269°

26T6L5')

16png-4o &
1ebpng-up &
-) 10118 10 SN{dIng [B10]
shepnQ (ejol »
sidisoay gjo) =
skepnQ ‘sidieoay Jo Aewwns AL

oLl sfepno ‘sjdizoay Jo Alrwuwng A4

@ skepnQ 'sidiaoay Jo Alewwng - |°} s|qeL ‘1 ajqe) L)

SUOI[I Ur §
SUOI[|I ul ﬁ

:uado sejqey | 4

hoy ﬁssw

8661

168}

9661

we)j aury

_ SN

| zevl

0c.

yovl

ToPh ~I™

(-) uoyaq Jo smding |ejo)

0002

066}

086} 0.6} 0961 0561 ov6l

{000°09¢)
{000'0.2)

-l

(000'081) 5

_ (000°06)

||_|__.._]]]|_ O oo 0

Ky SUOIIIN

s

=3
<
-~
~r
~—

00006

04|~~~ 10bpng 3,009 gn

™~

Tox

WipJ" L LBIgeY LISy QWO jWpIASOY e/ dny _ Juswnoog eleq Jo uN

»

or6l

‘pousd yelS

lelelaf=] | [E]s] EIE1E]

90v1

dis4 s/00) sejuoned Weyd MIIA WP3 a4

JamalA Bleg TNQY

Vvl "Old

US 9,262,383 B2

Sheet 18 of 40

Feb. 16, 2016

U.S. Patent

+ 9] saagawiL|[|l gLEw8LS L] auogQ
[198yspeasds MY sajoujoo] (Y salfieyd M Jasmoig JWLH 1D
ald] D
14 S¥Ll 0€'€9e L 010l 8v'y 806} oney 1G9p [E10)/SaAIBSA |BUONEUIBIUI & " —
4 0G6'vv £V'ee0’l) L1'8S (AN £9°7¢ oley d09A99p (€10} «
| j '7EG° £/ S puE < Jo s)odxa/1qep (ej0) 8
k\ 14 000 000 I 000 000 000 %) soney
i £ 1l I 0 0 0 s10)pa1d ajeaud 0] Pamo SIESLIE |5819)U »
9021~ = 0 0 I 0 0 0 SI0]IPALd [RI1II0 O} PIMO SIBalle |Salalui * 0eL
& t 8L, b 0, 0 . 0, slesle jsalju)
<]t 14444 GO¢ 608 L 00€.E £CE 6% JATA 1 uua) Joys «
moy [efesony | wing By | 6661 | v661 | £66) | we} aun
X LA sopspeis oo - 13 |
[r-%-d
pophb—t— e SPUEDJ0SHOdXGEP [BIOL ‘SXY ZA 1G3P BRI} [el0L ISIXY LA N
¢00c 000¢ 9661 966L v66L 66l 066l 886L 986F ¥BGL €86l 086
000 . 0 ezl
00 00U~ IT—TT—h—H-01 [1 H 000°05
T~
N V 91
002 H H HHHHH H = 000001
ooooe] H H HH KR — 000'05L
L1 |\ -
S pue 9 10 shodxa/Agep (210 L _
00007 o 00000z, |/
~
Nomﬂ s 5P ubtalo) [0 1] Rt /
A (WpI'|00/XaW N9 |WP/S]y/JoSMOIAILP/WPY/ D l4] Juswnoog eleq Jo TuN
adA) oses3 anowsy ppy awoH dojs piemiog4 yoeg ga10g Adop asol) uadQ
4 (86] || PpOMOd LEIZ| SL
__ 2 | _ n a2 & 8 [® ¢ o B & E o 90vl
doHf MOpufid s|00T sejuoaed weyd MIIA W3 a3
& JomaiA eleq NGy Y

US 9,262,383 B2

Sheet 19 of 40

Feb. 16, 2016

U.S. Patent

- 0l | sewesewy|[| 8LEY81'SLL || auog
[109yspeasds MY ssjoujooq MY 881 leyD [0'Y__Jesmolg TALH I
174
21l Sy Mol C
' : : : | 2l [euofjewaUl s =
lw Syl 0£'€97 W m | 8¥'y 80'61 Uondiosag saues n_o_o\s.wn _S~B. :
14) 6g S PUB 9 JO 8}J0dx3/gep 210 i
90z y 000 000 b0 000 000 %) Soney
N/L//m £ 1 I 0 0 0 SI0JPaID B)eAIId 0) PIMO SIBSLIE JSaIR)UI +
l.m 0 0 I 0 0 0 $10JIpald [BIDIO 0) POMO SIeSLIe JSaIa)Uj ¢ 0¢L
£ 8L, 10 0 . 0 . sieaue)sassyui
2 A %%4 697606 1L 00€/€ £CE 6E 15798 una} Jouys «
moy [ebeseny [wng) [ceel [ve6L €661 | nl | way| aun
X aP sonsels oaxe - NI3
| -
S PUB © 40 5H0dX3AG3P 2101 SIXY ZA 1GOP UBIAIO) [EJ0) SIKY JA ™ ST ;1))
000 ¢00C 000C 8661 966L v66L 266 0GGL 986 986l ¥BGL 286, 0861 0
. -4 1 1] 1 i 1 1 f
00°00L [;I/r/ 00005
Ny 91L
0000{f H HHHHUHUH H F—=—<—_| 000'004
ooooe} H H HH =LK = \/\,\ 000'05}
L — - N4
S pue © Jo spodxe)gep (elo _
—00°00% " 000002 |/
= P uBieio} (2101] T ooneny N\
m__ Wp.’ | 0oIXaIW N~ [LPY/SS|ly/1asMOIgUIPY/IWPY/:D:31] uswnooq eleq jo Tun| 90¥1
adf] ssesq snowsy ppy awoHy dojg plewiod doeg ;i usawg Adon esoiy usdp
A ()96] || pousdlelg| Sl
[I | 5] R A &8 @ 8 ® @ o B a &a @9
disH mopuiy S|o0] seWoned Jeyd MOl Jipd alg
A EIN Jomain e)eQ NGy Y

US 9,262,383 B2

Sheet 20 of 40

Feb. 16, 2016

U.S. Patent

Wd O£ |

[o0p'e1 2L sorepdnuaaios [| fomain elea TNGY (M

epingr @l Wo 8 [PesE

A

souasawn] | gLEP8L'SLL] auoq

[183uspea.ds Iy s8jouj004 (Y sailpeyd [0 __Josmoig JNLH Y

199p [B}0}/SaAIaSA) [RUONBLISIUI 5 =~ ~

powey | [o | dQ9AGEP €10}

3 pue 9 jo 5)10dxa93p 210} 8
902}~ | [[» 9% Soljey
S I |a] S ieoueu jeuogeussiul 4| Woy paaLdQ 8OIN0S [si0jIpai0 8jeAld 0) PBMO SIEBLIE JSBIBIUI ¢
0 0 A 'SILONLOOS | SICHPaIS [BIDLO O} PAMO SieaLIe jSaisjui * 0cL
£ 8L, L slealle }saiaui ¢
2 (44544 592 608 | oney 6 Ay W8] HOYS «
moy [efereny Jwng yurt— oy one UNLINER way| aur
® oA oney /6l -aBeIoAY sopstels oaxe - ni3 1
oey g5’y wng £
} ‘SIINN Jo # :
—_] € suodps |- T A
000 4 AMYWWNS WolLSILyLs (B . 9861 . ¥861 286l 0861 0
92yl -] WpJ L 02IXaW NI [WPS Q) Juswnooq
007004 1 JINJWNOOQIN3Yvd | H H 000'05
€ [9A97 _ V 9L
00002 0 cepmwbey | | 000001
1 oney SN
) ooxepy oL / \/\z\ _
P 00°00¢ || S pue 9 Jo spodxagap ela L :pusbar A4 00005}
" < pue o jo spodxanaap e10) mm jhd _ ‘W31 3NN
0000rH H+MO deH Wp3 3|l 00000z L/
ol 199p cm_eoh el] E Spue9 o mtoaxw\—nwb {BloL .w /\./
al WPpJ' | 02IX3W ™ Na™ |LUP/SO|U/19sMOIgWPY/IWPY/:D:8ll4| Juswnood ejed jo Tyn| 20v1
__ - 89: P tsw_ 5 .__ odA] esei3 anowsy ppy swoH do)s piemio4 yoeg i ueang Adon esoy uadp
n 2 8 8 & ® 0 o B 3 a o

deH MOPUA s00 sSejioneS Meyd mein Wp3 eld

XI&l]

1emalA Bleg JNay VY

ari "ol

US 9,262,383 B2

Sheet 21 of 40

Feb. 16, 2016

U.S. Patent

0574

KioBajes 1= uado s20Q 10y _ \ ‘auo(

owely gAYisayspeaids E5Y Jselouiood =N ealljueyn Tjiesmoig TWIH
B 62V 7/6'9 128'sk 0 208’y ¥Gl'y 999"/ spuesnouy ui§ SLdV 3LVO NOLONITIaM OH
PLLGHO') 0z€', 0 98/' 60S'} g8l spuesnoy) Ul § O SLdY ISNOH THIHSAWVH Pue NOONOT Ui
992 0L 2819 0 8/8'C 980'7 bl spuesnoy) U § O SLNIWLNYEY 1SIM LTTVH
¥12'998C £90°0¢ 0 1921 Gey's spuesnoyj uj$ O sjuawedy Jusosaln) yed Uk
12T 268G} 0 208' 0.0 spuesnoy uj ¢ O sjuewpedy pieAdiys (
68609, 69¢6E 0 990G ¥860L 1819 . S1dy JOVTTIA HOLNG Kk
|| 98zesl ez 0 e : SRRSO U A S LAY ANOO VO
L s 0 ,mmv\ VSRS LU A STy 3SNORAOLSING U
ASBBLL Y BGE: ,ﬁ&wmH”_uoﬁwwwmmm,m\m, , wawwmm%m o _M@-‘&&mm 2SIV 33H) SS0YI N
e e i s e 8 SRS S YN i
789'0% 1182 0 108'%8 L£6'0F gm oy spuesnoyL i § 0 alouneg) &
£71'€88')¢ 281'¢22 0 £92'0¢ sev'le 810°IE spuesnoyl U1 ¢ O sijodeuuyp)
|| EviSe0’L 916y 0 618 280'L §9.'s spuesnoyi U ¢ O ua3pIaqYe)
21 0 0 0 —— —— —— O 00 "ou) 113y dlisedwo) B &
Bay | wng [swn [uey [seopuks Jsano | swn| | way sun
.mu ABejens uonnjosay
8 3 il g
it i n i
! L] 0
sidy a0y ye0 [J
i 00§,
sjdy asnoH joisug 4 5
sidy ysain sso1) [000G} W
E
llemuiod Ausq yepung [0057z &
000°0¢

saifajess uonenjeA - 'ou| 113y slisodwio)

| 110"} Ju |Wpy/Saju/Aeul/.1ASOYIeO0) /34| SSRIPPY THN

@ edAl Jes|D sxy-A SIXy-X owoq UOIS PEMIO] 0BG usa;s juuq4 Hodx3 saeS uadp
) B B & ® & O B ° m @ o

<] & P djeH MopuUlfl S00] S3JU0AE] WeyD MaiA 1p3 ald

BT "auj |3y aysodwio) - ('), airTJojelawnN [l

0ZL

vl "Old

US 9,262,383 B2

Sheet 22 of 40

Feb. 16, 2016

U.S. Patent

_ sauag au] | _

| = uado sooQ 10

[reayspeaids [Y serowoo4 =Neaiptey FYiosmoig IWLHEN]

ocrl

\

wL'ove zl'iol
99€'prl 99€'€90'9

¥69'2p8'S Sv'L09'SHE
(64" mﬁ : ao_ m: E

T ooo'sel

T 000'9F

9LE'e8y'y €52662'880 T 000084’ 000'PL8'S 000'€S6'G SpuesnoyLui g O
I 000'viv'LL 000'F8LLL 000'G9ELL
T (000'288'2) (000'65L s (000'885 NV

s clea i R AR kA4S

000'8€L 000'6EL spuesnoyLul$ O

000'GE 00069

S000:886'F

spuesnoy] uj a O

uonensiuwpy [euatedagel)<®
spuesnoyl Ul $ O uonessiiwpy Bupayien Jomodel <
sweiBoid ABrouzp) o
spuesnoy] uj ¢ O SaliAldY asuayaq Abiaug slwiolyp)-<® S
a_mcm 10 JuawWedade)<®
:ABIpUg joustipedodhl) &

B £z

200z 11002

ETET

alay 1xa) SIS USRT TUSWHETS] @

813 }x8) ST SUIMUS PAFEWIUT TNUH @
$59.N0S Bjeq [eulbLO :Waj| aur Joj SYun

:$804N03 ejeq [euibuo

SjuaWalJ pajoajes Apualng Joj s pinp)

JeaA (easid

PR ROV OV OO VO DO VDD DDDDDOD
R R E SRV IN I SBRAEHEIID
NISEEREREEE
90 0 1

000000 <

>

0000000} 2

8

-1

000'000'G} @

00000002

KB1au3 jo 1daq - shepnp

[«] wpJe | ~ABIAUS IO |LIPY/S3|U/a) 1i0VeIBWNN/-QASOUY[EI0Y/:3]y | SSaIpPY TN
@ adf). _mo_o SIXY-A SIXy-X swoH OIS plemiod xoeg usanS juug Modx3 enes uadp
_ &= B B ® ® O B 2 & @ 9

dje mOpuifi S|00] SajuoAe ey maip Jp3 95

RERE] 0’} 87 JojesswnNi

4yl "Old

U.S. Patent Feb. 16, 2016 Sheet 23 of 40 US 9,262,383 B2

(START)

A 4

1502 _~ Select Line Item

Get the ID of

1504
~ the Line ltem

A

1506 __~ Undo any old macros

A 4

1508 __~] Delete the last Series

FIG. 15A

U.S. Patent

Feb. 16, 2016

Sheet 24 of 40

US 9,262,383 B2

1512 __~

Remove existing data

v

1514~

Get RDMLDoc from PDS

'

1516 __~

Get RDMLLineltem

'

1518 __~

Normalize X data

'

1520 __~

Fill X Axis with data

'

1522 __~]

Fill Y Axis with data

'

1524

Mark Which Y Axis This Series is on

1526

Yes

No

1 52%/\

Add Axis

1530 __~

Set number formats for axis labels

'

1532 __~J

Set the number precision

'

1534 __~

Update the footnotes

'

1536 __~

Run any macros that are applied

FIG. 15B

U.S. Patent

Feb. 16, 2016 Sheet 25 of 40

7

1638 __~ Set Y1 Title
v

1540 __~ Set Y2 Title

1542 o~ Update the Series Styles
v

1544 __ ~ Update the Chart Title
v

1546 o~ Update the Legend
v

1548 o~ Update the X Axis
'

1550 _~] Update the Number Precision
v

15652 __ o~ Update the Y Axis
'

15654 __ o~ Update the Chart Type
vy

1556 __~ Update the Footer
v

1558 o~ Set the maximum X value
A 4

1560~ Repaint the Graphical Chart

END

FIG. 15C

US 9,262,383 B2

US 9,262,383 B2

Sheet 26 of 40

Feb. 16, 2016

U.S. Patent

91 "OId

) DCDL

{EL (]
al L
im | YAGEEE L 8069001 [4:14: 1411 SLGEYLL BZLLYEL uoponsuod ey | 9
L £806529 9179€Z9 8r¥1Z0L #9GG.€9 71981E9 |uonenjead pue)sa) ‘uswdojanaq ‘yoleasay | & u
l LEGBEEYL GEEBEB LI 9Z805EG | GGGLEQTL EEOTESK L jawaindoyd | ¥ :
L G1B60LF 1L 81.l8%ECL 0r0ZEBLL 918€481L1 B6CBEBS L aoueuauiely pue uonesado | € i
[G5Z60007 FZ9CL6L 1 ¥8OLZYLL 9E8GGLUL ¥690EEIL |ouuosiad Aieyppy | € _
13 9961 G961 961 £961 2961 T
< 3 3

uonenisue) ey N
uonen|eag pu

B 159 'Judwdoana('yolpasay I

wawanoold [

saueusjuiey pue vonriado EENE

jpuvosiag Aeppn I

+000'095'09

000'008'20¢

000'095'€9E

asuajaq Jo daq - sfeno

') il
ogooZL ek 5
L =
' 1 3
0co089 I8l m

o
000'0¥Z'THZ m

WHS | O8US8p GUIO [WPASSIS SAMOIGIWIPAN AL Bl

“EoE_._,uoo w—,wn_wo ._ID

12MalA ele g JHAY

g

N

>9lL

US 9,262,383 B2

Sheet 27 of 40

Feb. 16, 2016

U.S. Patent

20pL ~J]

201
\
Y -
(:/ ‘8uoqg
[sasmosg INLH | soxew | weusereq | Ssj0uj004 [maineai)
J
>82.
J(uawabeuey [ejuswpedaq) G# SaUSS BJON
:(UoRBONPT JINPY PUB [BUOHEJOA JO 90WO) t# SSUSS :3JON
(S00IABS SAIEHIGEYSY PUB UONEINDT [2199S JO 30WQO) €4 SeUdS :3jON
:(uopeonp3 Atepuodag pue AIBjuawa|3 JO DWO) Z4# SOUSS 80N
{(uoreanp3 A1epuooasiod Jo 0W0) L# Sauag ajoN | |/
I/
000¢ 0664 086} omm.v 0
7 % W 7 Z P AV \ L
94% 2 %2 Ze 000'8Y€ "
JuswsBeue)y Juswpedaq FE=g (K 119 ﬂ% S 1 2
o i i N 00096971 2,
uojeanp tHH N PURTIP -
3)InpY pug [EUONEIOA JO BOYO [TTT] ! N = 0004022 & el
H <] b =
SO0INIAG SANEN|IqRYSY roiny B
pue uojesnp3 [eoads J0 0 Ky NN By - jo00'zeEs @
uoneanp3 Aep i —) 000°'0%2'9E
10033 pue AIEjusLLa|3 J0 30O EEER —
L uo adan — _J
1eanp3 AIBPUOI3SISO U0 30O 77 uojeanp3 jo daq - sfepno
_ >_ wps Fl:o:mo:umuﬁ_Eou_EEmm_%mmso._m_Evm«s_\”m_m_ JuswngoQ ejeq 1o 14N
T =l | Bees | el | Bl2Ek | slEele]
digH S0l SeloAed MEUD MeIA WpT el
[X][@][] Jomal E)eq TNaY W

JARDIE

U.S. Patent Feb. 16, 2016 Sheet 28 of 40 US 9,262,383 B2

RMML Document Type Definition

1800 1810 918
N s s

macro_source contact_info

51 804

macro_header

51812 5918

license_terms contact_info

51802 5916

linkset

macro_doc =
51816 5922
macro_description link
;1814 ;1818
*— documentation help_page
51806
1820

=~

macro_code

code

1822

~

— instructions

1824

1826 ;926

] qualifiers li_class_set :
. 930
1828 /(

ERRN li_class

<~

— gui

N

L_ 51 808
macro_references

A%

— error_handling

1830

~

— testing

51 802
FIG. 18 —— macro_doc

51834
— data_docs

US 9,262,383 B2

Sheet 29 of 40

Feb. 16, 2016

U.S. Patent

9¢61

V6l "Old
HIAO o1oep AX oloep 190 osoep 1SL omoepN
o a o 5
144412 ol 0261 gL6l
Jsydepy ocioep |«
A /\/
094
\|v 0Ioe| <
R
8G.
Aojyoe4 ouoep 20(Q TNINY <
(/ A J
cl6l /mw@r
lapesy 20Q TANY
A /7
0L61
Aseiqi] osoep art IANY
% M
806}

mcmE:ocD TN

N
1241

US 9,262,383 B2

Sheet 30 of 40

Feb. 16, 2016

U.S. Patent

|sued Js)oweled

<<
0961

g6l 9ld
||||||||||||||||||||||||||||||||||||| |
I | |

I | I "
v v v !
1008 |ND 0I0BW | |OlpEY IND CJ0BN ISIT INS 00BN _
I
A] I
// [AN N / !
9681 4% Zs8lt “
I
I
I
I
I
|
yneeg INO OB ¢ ———————————————— “
I
/\/ |
0664 !
I
a6l “
/) _
!
INO oeN |e alqeueA W _
|
N t

srel dnoig -» Aleqi oloe

uondwnssy oloep an W
7 Pt
12441 9¢61
joued uolduosaq
v A 4
NI
8561 » |SUBHOIOBN MBN < > [aued N
ceL 42!

US 9,262,383 B2

Sheet 31 of 40

Feb. 16, 2016

U.S. Patent

J61 'OId
uondaox3 enwio4
7'y /)
9661
JszZusno] SPON B|nuuoS ejnwiio4
= N N
v661 2661 0661
A
JaA|0S9Y uonouny JON0SaY B|qeLen

086

L
_\¢\ Ja181dia)U|

TNINY

// ¥

8861

lojen|eag

A

y861

/)

9861

A 4

INS oioe

//

816l

A 4

Y

Adelqi oloep

(/

9¢61

ejeq Uey)

LN

GiZ

laBeuely o1oep

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1
I
|
|
|
|
|
|
|
|
|
|
|
|
)
|
[

US 9,262,383 B2

Sheet 32 of 40

Feb. 16, 2016

U.S. Patent

2002 %_ i
Wi oA |l | JoMaIA BlEQ TWAY m__ - aopigjoysuaansoren il M © &3 @ |I[FeSE]
s g || sowesouwil ||| 62k [\ auog |
kosoepy Y jeayspeads mY w&oSooulﬂ/_ sai /ey MY Jesmoig JWIHIDY
8661 —— abelsay Buinopy
—— / sa|gele 1581 (] h
5058 - COKEYY fouaung sbuey) Iy
e - Aey Admnw G
SOURl - SOUBl] “fouaLno wos >TEL
SEI0Q - BPEUED) | | j5150ue 0} siejop wnwixepwnuwiwy G
SYRWLSINGQ - AUBULDS S SUeAUOD) wns
096} ~JM Spunod - uegug mmw‘_w>< ﬂ
e coﬁgm_m__wommm: uogdudseq (aInjosae/anyIsod/anneBau) anjea panu;) y
N0 WO B RARS fouanng ebueyy dlgeayddy B3 &
‘sJajaweled 010N SOlISHEIS dlwouco] .m.:m__
000e 0661 0861 0461
7 T B8 R T F |8 | PR e e e e e ey 0
000'000'G
R-21
i e
nnal =
0000000l
o
L 8
&
0000006}
00000002
304sn[§0 Juswpedaq = sopsnr jo ‘jdeg - skepno
[a][WpJ|s0ysNT_ quio” |LIPY/SSI\IaSMOIgIWPH\WPE\D/3)4] 1uewnooq ejeq Jo ToN
= odk] osBIg SAOWRY PPV awoy do)s piemio4 yoeg ugag Adon ason usdp
0] o _cefarwmarmsh] w @ @ @ e ® O O B g B O
dleH mOpujjy s[o0] sojuoRey MeyD MeiA WpF elid
N Jomsip eleq TN Y

vo0¢ "9l

US 9,262,383 B2

Sheet 33 of 40

Feb. 16, 2016

U.S. Patent

0964

2002 b
p ‘X oN/m
| | JoMaIA Bleq Eomﬂ_‘ ~-sopsiolsusainsonen il W@ &3 @ ||[FESE
(4] [il salagawi] | [6zl /5 auoqg
008 JoouspeaIds D S510Uj004 (I ol ey MY Joswoig JNIHID

aBeiany Buinop
Bl sajqelieA 131
sanfen [euibup siajowesed fouaung abueys
[obueyn oNl) pup 03 Buipicooe Adninw Q
s0J0z pJefamaQ ‘53195 ejep s
s|inu pIebasigO e jo abesare E:E_xm_\,_\szsh_q___\,_ O
A abesore [ny@ | O SeONPOMd %m_@,wm
JRjRUIEIEd BI99G wondoseq (eInjosqe/enmisod/anyebau) snjea yaau)]
abeony aiqeaddy 53 ¢
Sigjaweled ;0108 SORSE}S JWoueo3 'S N
000 0661 0861 0461
000'000's
R=<4
z
.-
0000000l
2
&
000'000G)
000°000°02
a01Sn[10 JuBIpEdeq £ aonsnp jo ydeq - shepng
M: WpJ'|,3RSN{ quIO™ |Wpy/S3|y\aSMOIGIUPHILPHL: /311 luswndoq ejed 40 74N
= odA| aseig arowey PPV swoH do)s premio4 oeg usang Adop esoiny usdp
] [celaredEsk) o 5 & @ s ® 6O O B &3 B 2
disH ™OpUIM, SOl sejiored eyl Mela 3 eld
HEIN JomaIA Bleq NG Y

261

g0¢ 'Ol

US 9,262,383 B2

Sheet 34 of 40

Feb. 16, 2016

U.S. Patent

¢00¢
AL 9¢61
Wz oD A I somal eleg Wy P - 2opsioususapsoen Bl W © &3 @ [HAISE
@_ |[ssuegawiL || i 621 |] auoq
Eooe Y 1esyspealds Y sajoumood MY eoujpeyd QU sesmoig JWLIH{Y
]
8561 KT 53| |
| uoneyu| SN o) 1snlpy
n - A abeseny Bumo
= | 0S¥ s(geueA 1521
69v (001 = 266} kousung abueyd (]
vm.v ‘19)eyaq 4ao) senjea Adminy Q
86y pajsnipe-uoneyu! Jog ~ZeL
0961 mo,m 0} SWajl Ul SHAAU0Y wnXeN/AUNWILI]
o~ NF.m wns (]
mv.m :uonduasaq abeseny
172 woneyy (aInjosqe/annisodranyebau) anjea tw\“m_ iy}
siojeys : dgedliddy 514
[¥>/%ued SN 4o} jsnipy soew |
‘slelawesed J0I0B W SO}SReIS dIWou0d3 'S'N[]
o -
000¢ 0661 0861 061
[1 6 A e
000'000s =
3
7 3
000°000'04 &
0000005}
00000002
80B8N[40 Juswpedsq == sopsnr 4o 3daq - skepno
(a][WpJ | ~a0)snl_quio”|wpy/Sajy|IsSMOIgILIPHWPYYO/-]13] Juswnoog eled 40 TuN
adA| eseig srowey ppy awoH dojg piemio4 oeg usalng Adon esopy uadp .
J [« zosi[apoegieskl| w m @ @ s ® & O B 3 & o
diaH MOPUIAA S|00] SejloRed HEYD MaiA 1P alid
XT&[] JamaiA eleq NG WY

US 9,262,383 B2

Sheet 35 of 40

Feb. 16, 2016

U.S. Patent

¢00¢

961

2?&@@@ I

| JemalA eleq NG 1|

- oop'sjoygusapsoney B Il WS & @ |I[FesE

|

souagaunl ||

67! : | | auoQ

Bosoep

193yspealds MY

ssjouod MY saijpeys MY Jesmoig TWIH N
I

[0l]4q Admni

1318weled e Aipo

—

“Jgjaweled

ay) Ag seuas
yoea s| Jaquinu
(oea saldpIniy

uonduoss(

Adowy

‘Slajalieled

‘04BN

abesony Buinopy

ss|qeLeA 188] (]

fauaung abueyn

Adginw

wos (]

wnwipepwnwiuiy

wng

abesany

(aInjosqesannisodsennebau) anjea uaau)
ajqealddy 5§

SOISHIEIS JWoU0o3 SN [

a ol

291)SNf* 40 JUBWedeQ £

0002

0661

0861

000°000°05

00°000°00L

spuesnoyy ul ¢

000000051

000000002

aapisne Jo ydaq - sAepno

][

WpJ°|~80)sN[qUIO™ |Ipy/S3|ASMOIGILIPH\WPNY: Df-811] Juawnooeq eed Jo T8N

[« 2961][« poraaveisksi |

adf] sses3 anoway

noa &

PPY
&

awoH do)g piemiod oeg

& ® A D

uaag Adop asoy uadp
B 3 & o

diaH MOPUIAA SI00] S9IORE] WEYS MaA WP aiid

1BMaIA BlRd NG Y

aoe "ol

" CEL

U.S. Patent

Feb. 16, 2016

(sTaART D

Sheet 36 of 40

2102

User puts data
in table form

2104 _~|

A 4
Open and
initialize dialog
box

2106 |

User fills in
default values
for attributes

A 4

User clicks
"OK" to create
attribute
columns

2110 |

Open and
initialize dialog
box

2112

Create each
element,
nesting as
necessary

y

2114

Save to file

(. Een)

y

FIG. 21

US 9,262,383 B2

US 9,262,383 B2

Sheet 37 of 40

Feb. 16, 2016

U.S. Patent

qﬁwm
Wzt ©OA | |"-oop ez Jousueans(R) | asseg ensyyosasny R3] s @]l Ho s [VRE
[T N [] [_ Rpday |
[« [[»] /2183ysX| 1eaysy Buibeis \[<>
LA o
| ¥E
£e
7
L€
Q¢
14
8¢
12
92
5z
[24
£2
74
[
0Z
6l
gl
L
9
Gl
L
ZPEOL 1,988 10O/17 [16Sy 1/€ 688 798 715 clze 17562 Z8 1608 $18410 ||y
98/7 [0e 16602 60 £F 142 961 590 Iz 683 iy 1G} alefEmalandl z|
GOy |E08F T OFOF |2/ 002 06F £/G 069 GZhl g /1 160 sAemybIH])}
1e8 [//17 16J6c Joeee [ep/Z2 19962 [9692 [16vE /12 3 £Z _lceee uaneanp3[o}
600¢ 1/8/22 1¥89/1 18cOLL]£988 6L6__ 16226 116/8 ¥/ c9// 101z, | Aqsainypusdxs jesaust g0l 6
9/G T1vGy 1GB9F 11992 1[92z I¢€clz Jfe/8F (1184 9, [6¥ £¥9L T EhJ1 clayio |y g
995z [98¥Z 11981 [GS8 = R Y6 008 910 ZEZ 9}] SULHLUBAOS) [BIOpo-] LI0Y ANLaASY /.
T £6G 78S ad Gy 2z Gl o} 3 By 6/ 6 SOXE) 8L0oUI e LoNe.od10)[9
96 / £ ZZy Zre 9/7 ZZ 812 £q 08 vl 0/ SOXE} SWOJU JenpIAIpUll G
JGF LG Icyyy [08RZ | 6B2Z 116tz |286 6/ 00 26/ 0/ soxe] 5)d1e0a) ssoub pue s3jeg| v
g f¥e/ Joc19 [o@6k [#0OF 1 JESh ooy Oby CROV__19/0v [/8pF] OElv soxe) Ausdoid] ¢
181GZ 111602 1062/l 1996¢l JB060L IBLPOL 16096 [92g6 [GheR 1820/ 17292/ [1Jz/ | 80inos Aq Sanuanal [elausb [elo
| +BU_ zoel [(QGALT @bl OveL[vPAL] 2ZvhL] Owel] ©cel]| Ocel] pe6Ll ge6l] /26l [ERET
Jv] N 1 3 [] H 9 4 3 q p) 8 Y
pusbaj || I= [«] vy
el y.g.o > ===|n/ 8 o8 IR I RN I EEEE]
= doH mopuld g s00] Jewity pesU] MAiA Wp3 Ol Em |
it i SIX'$8q — [90X3 YOSOIIN MH_ Q
Ve 9Old

US 9,262,383 B2

Sheet 38 of 40

Feb. 16, 2016

U.S. Patent

Wy OB A |

_ - Q0P pJEZIMSI0YS USR0S (B _ 8] -0ISBR (ENSIA YOS @._

sxv8 0@l W o & @ [VISE

_

[nNN

fpesy

[o]

/ 2 132us ¥} 10ausy Buibeis KB

o]]

g

7€

£¢

A3

}e

0¢

dieH

| [] [

6z

8¢

Ll

M

suo] epmiuben

S

creol

2988

[o] [&]

]

Wbua1----{H
asauedep USA----
YN spunod----+
SN$----4
foushing----{9
(fueq s ynejoq) BuQ 1098

174

%4

2

24

Q¢

mn

gl

8l

Aofasnoyajiym mmm :80Inog

Ll

T

9l

9j0U}004

S

pl

88/2

10)74i74

059p

£08E

81€8

LLL

(2]

2]

P JAUI0 |7

€l

ooz] Feuudod

—eigjoM olqng]

¢l

suoliy § | spL sixy A

8609¢

JATXA4

STEMIEIH

bl

uoNeanp3

[0

£9/9

Jny Aq Sainjipuadxe [eJausb (g0

sjobpng Juawuiaaog) jo AoJsIH _ Sl Heys

N | Y

8yl Jiy

996¢

sanjep ynejeq

BULI-LLIGAOE) [21ape-] L) ONUGASY

'SaXe} alLliodul }au uoNelodIon)

(O, o110 uay) ‘Bojelp siu Ino |1y o0l eI JO |80 Ye| do} uo J0SIND 83.|d)

'SOXE) SWDOU [ENPIAIDU{

Soxe) Sd1a2a] $50.D pue sajes

suwn|od SynquIly ynejaq ppy — buibbe) 10y

2

saxe) Ausdold

o |2
KD
~

80601

81v0L 16096 8¢c6

g6¢8 879/ 192/

Y44

20IN0S Ag Ssanuaal [esauab [ejo |

puaba| ||

— [N = O KO - oo kK

Pyl
|

Zvel 0¥61 BEGL
H R) Fl

961 pEBL 2861
E| d]

126}
8

1]

n / €@ oE

Y
sieyo |y [= Io]

£V

vk 1 ¥ 2 BT ocn o BDRY (AU @A U]

disH mopuipd eleg Sjo01

ET N RRSTEST QTET ST (T <[]

SIX'pg_q— [99X3 JOSOLIN_[X)|

90¢¢

g¢¢ "Old

US 9,262,383 B2

Sheet 39 of 40

Feb. 16, 2016

U.S. Patent

SMN 80 qozz SMN 8022 802 8022 80c¢
wory On@ | | \ - 0P pabzin siousuaslog (@ | “el-oseg Bnsin yospon R | R IR IS
[N M | ™ N M ha | N Apeay
Q@ \ [S \ /15345 X eausy Buibeis KT
A \ | V ! \ 1 | U ge
4%
£e
gt
19
0¢
60
8¢
i
9
A
74
£
2
14
0
[
8
L
91
Sl
¥l
M MMM . 90In0g[Juase SUCIA U S]obpns] JUSWUISACS) JO AOIS ENTENTA AT £l
M MMM _30In0gJ[Jua.e SUOIII U S1aBpng JUSWUIBAGS) JO AJOIS alefemanand [1 Zl
M MMM _30IN0g) Judse : SUOIN U S]ebpNg JUWUISA0S) 10 MOISIH skemubig [0l 1l
mman_eoinogiuded | (O#F #).0E SUOIIIY U SJabpng JUSWUIBAOE) JO K0)S uoeanp3 16 0l
mmmm_aomnogiudied [(O#F #)08E SUOIIAL U Sjabpng JuaiuuiaAos) Jo AojSIH Juogsun; Aq saimyjpuadxa pisush [elo] [3
WM _sanog|[Jualed | (03 #L.0%F SUOIIA U S}ebpng JUsWLISAOS) 10 AIOJSIH g0 iy [/]
M MMM _80In0g][JuBled] | . SUOIIA U S}ebpng JUsWUIAQS) J0 AIOJSIH || JUSUFWISAOE) [BXape- Wiol anuahdy [9 L
M mmm_ooInog[uaied [| : SUCIIA U S]ebpng JUSWUISACS) J0 AI0JSIH SXE) L0ouI jau uonesodio) [G 9
udJe QYO SUOIIA U S}abpng JUSWUIBA0S) 10 AIOJSIH SaxXe] aui0aLI [ENpIAIDU[[G
usie QRO SUOIIN U S1abpng JuswuaA0g) J0 AOJSIH | sexe) S)diadal SsoJb pue Safeg |£ 2
uale . Suony U S}ebpng JusWuIaA0s) Jo AJOJSIH soxe] Auadold |z 3
UaJe % SUCIIA U 5}oBpNg JUBWUIAAGS) JO AI0JSIH || eainos Aq sanuanal [eausb el || Z
[d11 T 9s5p 1] SajouI[][uoneja) _Jewnoy [[BASL) apy sixe 1e3 || BT pushal 1 arul)
Il r _ H) 1 3 a o] g Y
puaba[| [= |5
e TV-G-F|S|% s |@=ss] [EolB k17 Y 2 B weu|p DBY | AVR|@B DA
dH MOpURy EJEJ SO0l JewiS4 Vesul MOIA 1P Ol
SX'y8 g - [90X3 JOSOIN_)| ONN 0_ 4

US 9,262,383 B2

Sheet 40 of 40

Feb. 16, 2016

U.S. Patent

worl OB @ _ q - 0P PIEZIMSIOUSUS3I0S ~p-0158g _msmszomob_zﬁ_ m_x.vmaw_ __: WNoRD __ HeISEE
[1 WoN T zuisLi69=wng [Tpeoy

< [>] 7719805 % 1eausy Buibels \<IKIEIH
~ o
¥E
£e
4%
1e

[leax | AL SXY X =
W SaLBSAWIL _ adA] wsay| Ul WM
X4
9
sjuswa(3 pabueyn Ajuowwor - 14
¥¢
£C

44
1p3 ¥4
asmoig

0C

6l
wpryno | aueus|iy Q

_ sainjipuadx3 pue s)disosy Emesm\so_ L JuawWnoog

\va _ Kopang 9

Inding -

" _ disH asmoig siinejop
ajy-uouasn [

wpl'ineepiq _ 9ll4 INaY Hnejeq

N |

_ jpouen _

[T vasiziwousesmas:igvsizioaus | abuey yooig eleq

/ indul = bz
I A N R

[T dg 0f _
— G arnf= [¥

& NI T ECEEE IR o IEEEEE] Twen|leBRY|AYUR|IEB 0]
/ dieH mopul EBjeq SIoCL JBwiGy UdsUl maiA pT B[R]
/ \ SX¥8 - [90X3 JOSOLOIN _[X)|

e olez
aee 'old

a3 32 el axd e el 5 (=2

US 9,262,383 B2

1
SYSTEM, METHOD, AND COMPUTER
PROGRAM PRODUCT FOR PROCESSING A
MARKUP DOCUMENT

RELATED APPLICATIONS

This application is a continuation-in-part (for the purposes
of providing a glossary in accordance with the Glossary Pilot
Program) of application Ser. No. 12/222,751, filed Aug. 15,
2008 which, in turn, is a divisional of application Ser. No.
09/573,778, filed May 18,2000, now U.S. Pat. No. 7,421,648,
which, in turn, claims priority to Provisional U.S. Patent
Application No. 60/135,525, filed on May 21, 1999, and
Provisional U.S. Patent Application No. 60/183,152, filed on
Feb. 17,2000, which are all incorporated herein by reference.

The following identified U.S. patent applications are also
relied upon and are incorporated by reference in this applica-
tion.

U.S. patent application Ser. No. 09/573,780 (now U.S. Pat.
No. 7,650,355) entitled “Reusable Macro Markup Lan-
guage,” filed on May 18, 2000.

U.S. patent application Ser. No. 09/573,419 (now U.S. Pat.
No. 7,249,328), entitled “Tree View for Reusable Data
Markup Language,” filed on May 18, 2000.

U.S. patent application Ser. No. 09/573,413 (now U.S. Pat.
No. 6,920,608), entitled “Chart View for Reusable Data
Markup Language,” filed on May 18, 2000.

FIELD OF THE INVENTION

The present invention relates generally to data processing
systems and, more particularly, to a computer markup lan-
guage for use in a data browser and manipulator.

SUMMARY

A system, method, and computer program product are
provided for identitying a first markup document including
first numerical values and first tags reflecting first character-
istics of the first numerical values associated with a first unit
of' measure, and a second markup document including second
numerical values and second tags reflecting second charac-
teristics of the second numerical values associated with a
second unit of measure. The first characteristics of the first
numerical values associated with the first unit of measure are
different from the second characteristics of the second
numerical values associated with the second unit of measure.
At least a portion of the numerical values of at least one of the
first markup document or the second markup document are
automatically transformed, so that the at least some of the first
numerical values of the first markup document and at least
some of the second numerical values of the second markup
document have a common unit of measure. Further, at least a
part of the first markup document and at least a part of the
second markup document are processed, resulting in a single
markup document, for display.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 depicts a high level diagram of a Reusable Data
Markup Language (RDML) data viewer, its inputs and out-
puts in accordance with methods and systems consistent with
the present invention;

FIG. 2 depicts a data processing system suitable for use
with methods and systems consistent with the present inven-
tion;

FIG. 3 depicts a diagram of the interrelation of various
RDML software and hardware components shown in FIG. 2;

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 4 depicts the use of an RDML formatter shown on
FIGS. 2 and 3 to add markup tags to data;

FIG. 5 depicts a screen shot of a database/document tab and
management screen of the RDML formatter depicted in
FIGS. 2 and 3;

FIG. 6 depicts a flowchart of the steps performed when
accessing the RDML document server depicted in FIGS. 2
and 3;

FIG. 7A depicts internal architecture of the RDML data
viewer depicted in FIGS. 2 and 3;

FIG. 7B depicts a legend of the meaning of the symbols
depicted in FIG. 7A;

FIG. 8 depicts a flowchart of the steps performed by the
RDML data viewer in a method for downloading, processing
and displaying an RDML document in accordance with meth-
ods and systems consistent with the present invention;

FIG. 9 illustrates elements of an RDML Document Type
Definition in accordance with methods and systems consis-
tent with the present invention;

FIG. 10 depicts a flowchart of steps used to automatically
manipulate an RDML document for display using line item
attributes in accordance with methods and systems consistent
with the present invention;

FIG. 11 depicts a flowchart of the steps performed by the
x-value transformer depicted in FIG. 7A to store a new docu-
ment in the primary data store;

FIGS. 12A-12C depicts X-Y plots and tree views in accor-
dance with methods and systems consistent with the present
invention;

FIG. 13 depicts a primary data store of the RDML data
viewer as shown in FIG. 7A,;

FIGS. 14A-14F depict a chart view and tree view of the
RDML data viewer as depicted in FIG. 7A in accordance with
methods and systems consistent with the present invention;

FIGS. 15A-15C depict flowcharts of the steps performed
by a graphical user interface, chart manager and chart data
object for adding a line item to a chart view upon selection of
the line item in a tree view in accordance with methods and
systems consistent with the present invention;

FIG. 16 depicts a spreadsheet view and a chart view of the
data viewer in accordance with methods and systems consis-
tent with the present invention; and

FIG. 17 depicts a footnote view of the data viewer and a
chart view in accordance with methods and systems consis-
tent with the present invention;

FIG. 18 illustrates elements of a Reusable Macro Markup
Language (RMML) Document Type Definition in accor-
dance with the present invention;

FIGS. 19A-19C depict RMML document handling, an
RMML graphical interface, and an RMML macro interpreter,
respectively, in accordance with the present invention;

FIGS. 20A-20D illustrates screen shots of RMML macro
panels in accordance with the present invention.

FIG. 21 shows a flowchart illustrating steps used in a
method for tagging information from spreadsheets in accor-
dance with the present invention; and

FIGS. 22A-22D depicts exemplary screen shots of the
tagging of spreadsheet information tagging to create a docu-
ment in accordance with the present invention.

DETAILED DESCRIPTION
Glossary
HTMIL=HyperText Markup Language

Measurement=characteristics necessary to describe the mea-
surement aspects of the domain the number is taken from

US 9,262,383 B2

3

Structure=structuring of the data in within a table
Tagging=adding metadata

RDMI =Reusable Data Markup Language

XML =Extensible Markup Language

Methods and systems in accordance with the present inven-
tion provide a markup language, referred to as Reusable Data
Markup Language (“RDML”), that permits the browsing and
manipulation of numbers and provide a related data viewer
that acts as a combination Web browser and spreadsheet/
analytic application that may automatically read numbers
from multiple online sources and manipulate them without
human intervention. Using the markup language, users may
browse online sources using numerical-based queries, and the
data viewer may automatically combine and manipulate mul-
tiple documents on a single display.

In accordance with an implementation consistent with the
present invention, a method in a data processing system is
provided that receives a first markup document and a second
markup document, both the first markup document and the
second markup document containing numerical values and
tags reflecting characteristics of the numerical values. The
method automatically combines the first markup document
and the second markup document into a single data set and
displays the single data set.

In accordance with another implementation, a method in a
data processing system is provided that receives a document
containing numerical values, and receives indications of char-
acteristics of the numerical values, the characteristics includ-
ing a unit and a magnitude. Further, it adds the received
indications into the document as tags associated with the
numerical values to create a markup document.

In accordance with yet another implementation, a method
in a data processing system is provided that receives a markup
document having a set of numerical values and tags indicating
characteristics of the numerical values and determines a
transformation for the set of numerical values to reflect new
characteristics. The method then accesses a plurality of the
tags of the set of numerical values, the plurality of the tags
indicating magnitude, scale, modifier, units, measure, adjust-
ment and aggregation. Furthermore, the method determines
conversion factors for the magnitude, scale, modifier, units,
measure, adjustment and aggregation tags to accomplish the
transformation to the new characteristics and multiplies the
set of numerical values by the determined conversion factors
to transform the set of numerical values to reflect the new
characteristics.

Methods and systems in accordance with the present inven-
tion provide a chart view that automatically manipulates and
graphically displays numerical data. The manipulation and
display is based on attributes associated with the numerical
data describing characteristics of the numerical data. The
chart view facilitates the simultaneous display of different
series of numerical values of different types on a single chart
and automatically displays appropriate descriptive textual
components (e.g., axis labels, axis titles, chart titles, number
precision, legends, footnotes, axis scales, etc.) The chart view
allows single click transformations of series of numerical
values and provides automatic formatting of descriptive tex-
tual components in response.

Inaccordance with an implementation of the present inven-
tion, a method in a data processing system having a display
showing a chart is provided that receives a series of numerical
values with tags indicating characteristics of the numerical
values and displays the numerical values on the chart. Further,
the method automatically determines a title for the numerical
values based at least one of the tags and displays the deter-
mined title on the chart.

10

15

20

25

30

35

40

45

50

55

60

65

4

In accordance with another implementation of the present
invention, a method in a data processing system having a
display showing a chart is provided that receives a first series
of numerical values having tags indicating characteristics of
the numerical values and displays the first series of numerical
values on the chart, the first series of numerical values corre-
sponding to a first axis on the chart. The method further
receives a second series to be added to the chart, the second
series of numerical values having tags indicating character-
istics of the second series of numerical values and automati-
cally generates a second axis on the chart. Finally, the method
displays the second series of numerical values on the chart
corresponding to the second axis while the first series is
displayed on the chart.

In accordance with yet another implementation of the
present invention, a method in a data processing system hav-
ing a display showing a chart is provided that receives an
instruction to display a series of numerical values on the chart
on the display, the numerical values having tags indicating
characteristics of the numerical values, and displays the series
of numerical values on the chart in response to the received
instruction. The method then automatically formats the chart
based on at least one of the tags in response to the received
instruction.

In accordance with another implementation of the present
invention, a data processing system is provided comprising a
memory storing a charting application configured to manipu-
late and display numerical data, the memory having a selected
series of numerical values having a tag indicating text infor-
mation associated with the numerical values. The data pro-
cessing system further comprises a display showing a chart
having a legend that displays the text information associated
with the selected series of numerical values. The legend
word-wraps and scrolls the text information associated with
the series of numerical data when the text information does
not fit on the legend on the chart. The system further com-
prises a processor for running the charting application.

Methods and systems in accordance with the present inven-
tion provide a tree view that automatically manipulates and
graphically displays numerical data. The tree view facilitates
the simultaneous display of different series of numerical val-
ues of different types on a single display and automatically
displays descriptive textual components. The tree view allows
single click transformations of series of numerical values and
provides automatic formatting of descriptive textual compo-
nents in response. It further visually displays the relationship
between series of numerical data for a user while supplying
the user with hyperlinks associated with a given series of
numerical data.

Inaccordance with an implementation of the present inven-
tion, a method in a data processing system is provided that
receives a first and a second series of numerical values, and
determines the relationship between the first and second
series of numerical values. The method then displays an icon
depicting the relationship between the first and second series
of numerical values based on the determined relationship.

In accordance with another implementation of the present
invention, a method in a data processing system is provided
thatreceives a series of numerical values and a link associated
with the series of numerical values, the link having a list of
associated hyperlinks. The method displays the series of
numerical values and the associated link, and receives an
instruction to activate the link. Further, the method displays
the list of hyperlinks associated with the link in response to
the received instruction.

In accordance with yet another implementation of the
present invention, a method in a data processing system hav-

US 9,262,383 B2

5

ing a display showing a chart is provided that receives a series
of numerical values having associated metadata documenta-
tion. The method further receives an instruction to select the
series of numbers and displays the series of numerical values
on the chart while displaying the metadata documentation
associated with the series of numerical values.

In accordance with another implementation of the present
invention, a data processing system is provided that com-
prises a memory having a program for manipulating numeri-
cal values, and storing a first series of numerical values and a
second series of numerical values. The data processing sys-
tem further comprises a display that displays the first and
second series of numerical values and a relationship icon
depicting the relationship between the first series of numeri-
cal values and the second series of numerical values. Finally,
the data processing system further comprises a processor for
running the program.

Methods and systems in accordance with the present inven-
tion provide a markup language, referred to as Reusable
Macro Markup Language (“RMML”), for producing and uti-
lizing macros which are reusable numerical analysis routines
which can be written quickly, cheaply, and in a form usable by
a broad range of data documents in RDML,, the platform upon
which the macros are run.

RMML allows reusable spreadsheet type macros to be
posted as web documents, to be, searched by search engines,
to be combined into more complex programs, and to be
reused with many data documents. RMML brings to spread-
sheet manipulation routines the economic and productivity
benefits of (1) standardization, (2) interchangeable parts, (3)
specialization and assembly-line techniques in creation, and
(4) economies of scale in creation and deployment. In addi-
tion, RMML brings to spreadsheet macros and numerical
programming, some of the benefits of the World Wide Web:
(1) widespread accessibility on demand, (2) ability to search
for documents (in this case, search for capabilities and behav-
ior of routines instead of text or data), and (3) the ability to
hyperlink documents (including the ability of macros to call
each other remotely).

Inaccordance with an implementation of the present inven-
tion, a data processing system method is provided that
receives a macro defined to perform an operation on a series
of numerical values and receives a series of numerical values
having tags indicating characteristics of the numerical values.
The method then performs an operation defined by the macro
on the series of numerical values using the indicated charac-
teristics.

In accordance with another implementation of the present
invention, a data processing system method is provided that
receives a macro defining an operation on a set of numerical
values and receives a vector or matrix of numerical values.
The method then performs an operation defined by the macro
using the vector or matrix as a variable in the operation.

In accordance with yet another implementation of the
present invention, a data processing system is provided that
includes a memory containing a numerical analysis program
having a macro defined to perform an operation on a series of
numerical values, and a series of numerical values having tags
indicating characteristics of the numerical values. It further
comprises a processor for running the program such that the
program performs an operation defined by the macro on the
series of numerical values using the indicated characteristics,
and a display for displaying results of the operation.

Because of the length of the detailed description, the fol-
lowing table of contents is provided.

25

40

45

50

55

65

6
Topic Section
Reusable Data Markup Language Overview I
Reusable Macro Markup Language Overview LA
System Hardware Components 11
System Overview I
System Details v
Internal Data Viewer Architecture IVA
Document Type Definition IV.AL
Reader, Parser and Processor IV.A2
X-value Transformer and Line Item Set Types IV.A3
Primary Data Store IV.A4
Chart View IV.AS
Tree View IV.A6
Spreadsheet View IV.A7
Footnote View IV.AZ
Tagging Wizard IV.A9
Aspects of RDML Documents IV.AIO
Graphical User Interface and HTML browser IV.B
Reusable Macro Markup Language wv.C
RMML Macro Package V.C1

1. RDML Overview

Methods and systems consistent with the present invention
provide a markup language, referred to as Reusable Data
Markup Language (“RDML”), and a data viewer referred to
as the RDML data viewer that is used to retrieve, manipulate
and view documents in the RDML format. Generally, RDML
permits the browsing and manipulation of numbers, and
allows the viewer to act as a combination Web browser and
spreadsheet/analytic application that may automatically read
numbers from multiple online sources, understand their
meaning, and manipulate them without human intervention.
The RDML data viewer may use the Internet to obtain
requested sets of numbers like HTML does for text. Using
RDML,, it is possible to form a search on the Internet that is a
true query of numbers. One such request is the creation of a
list of quarterly revenues from 1996 to 1997 pertaining to
companies with sales growth greater than 10 percent and no
taxable income. After receiving any requested sets of numeri-
cal data, the data viewer may automatically transform and
combine them even if they are in different formats (i.e., one in
thousands of U.S. dollars and another in hundreds of French
francs) on a single graphical display without requiring the
user to make manual adjustments. The user may then make
single-click adjustments to the display (e.g., adjust for infla-
tion, currencies, time periods, number precision, etc.) to see
different aspects of the received information. RDML gener-
ally facilitates numerical browsing by associating numbers
with attributes describing the meaning of the numbers.

Although the preferred embodiment of RDML is a markup
language that is a fully compliant implementation of XML
version 1.0, other implementations are possible. XML is
described in detail in “XML Bible,” Elliotte Rusty Harold,
IDG Books Worldwide, 1999, which is incorporated herein
by reference. The RDML data viewer is a data browser, data
manipulator, data viewer (in the form of charts, spreadsheets,
etc.) and general user interface for data documents. It greatly
extends the capabilities provided by current spreadsheet and
database management programs. In addition to extended
capabilities, it lowers costs to businesses by permitting effi-
cient reuse of data, functions, and report formats.

The RDML data viewer works with RDML-formatted data
documents, which are files that may be stored locally, over a
network, including the Internet, or in any combination of
sources. The structure of the RDML data files allows the
RDML data viewer to act as a combination browser and
analytic program, such as a spreadsheet, which can automati-
cally read, interpret and manipulate numbers in its integrated

US 9,262,383 B2

7

analytic program. The RDML data viewer also provides a
“macro” development and management scheme which allows
users to create custom routines for the manipulation, trans-
formation and display of RDMIL-formatted data. Macros and
related aspects are described in greater detail below.

FIG. 1 depicts a high-level diagram of an RDML data
viewer 100, its inputs and its outputs in accordance with
methods and systems consistent with the present invention.
Generally, data viewer 100 may be software that resides in the
memory of a computer and accepts several types of input 102,
104 and 106, one of which is the RDML data document 102.
The RDML data document 102 may be an ASCII text docu-
ment formatted with RDML tags which are compliant with
XML version 1.0. In one implementation consistent with the
present invention, the tags of an RDML data document 102
are advantageously structured to include documentation of
the data and arrange data in “line items,” a collection of data
values that is similar to a “record” or “row” in a relational
database (discussed below). In RDML, the line item is gen-
erally the basic unit of calculation, as opposed to a single data
value or cell as is typical with most conventional databases or
spreadsheets. RDML documents 102 contain sets of line
items, such sets being analogous to “tables” in relational
databases, and documentation (“metadata”) regarding the
“line item sets.” The RDML data document 102 is read by the
RDML data viewer 100 which stores the data internally,
making it available to a number of “views” 108, which
present the data in different ways (charts, tables, etc.) to auser
(not shown). The views 108 are also referred to as programs
or applications, as they can be standalone software programs
that receive their data from the RDML data viewer 100.

Analysis routines can be developed for data and placed in
their own documents referred to as Reusable Macro Markup
Language (“RMML”) Macro Documents 104 which are
another input to the data viewer 100 and are optional. These
routines are reusable; they can be applied to virtually any data
document meeting the requirements set forth in the RMML
document 104. For example, an RMML document 104 may
contain routines for converting RDML data to different cur-
rencies, and any data denominated in currency can use the
RMML currency conversion macro. The preferred embodi-
ment of RMML is also a fully compliant implementation of
XML version 1.0, although other embodiments are possible.

Similarly, Reusable Data Style Language (“RDSL”) style
sheets 106, another optional input to the data viewer 100, can
be applied to data documents to create specially-formatted
output reports. A RDSL is a fully compliant implementation
of Extensible Style Language (“XSL”’) which is described in
detail in “XML Bible,” Elliotte Rusty Harold, IDG Books
Worldwide, 1999. These RDSL documents 106 are XSL-
compliant style sheets which essentially act as report writers
for RDML data documents 102. A typical use would be for
data documents containing corporate financial statements. A
single RDML. data document 102 may contain a set of finan-
cial statements, but several different style sheets could be
applied: one to show the data in annual columns, one to show
it in a quarterly breakdown, one to show it in European
format, and so forth. The RDML data viewer 100 automati-
cally combines data documents 102 and style documents 106
to create reports.

RDML dramatically reduces the expense, time, and com-
plexity of data manipulation by addressing the aforemen-
tioned problems of documentation of data, non-standardiza-
tion of analytic routines, and low conceptual-level
calculations of data. RDML addresses the problem of the
separation of data and its documentation by encapsulating
data and its documentation together in machine-readable

10

15

20

25

30

35

40

45

50

55

60

65

8

form that can be used interactively. This differs from the
approach of conventional relational databases in which data is
kept in the computer and the documentation typically kept in
a three-ring binder or other printed document. The separation
of data and its documentation often ensures the need for
high-priced database programmers every time the data must
be accessed, used or transferred. Documentation in RDML
also differs from that of spreadsheets, which tend to be per-
sonal in that the documentation is in the head and personal
notes of the creator. lii one implementation consistent with
the present invention, RDML encapsulates machine-readable
documentation with the data. The data and its documentation
(metadata) are used together by the data viewer 100 to inter-
pret what the numbers mean, how they are to be used, and how
they are to be displayed. The small up-front investment in
refining the raw data pays off in the lessened need for human
labor to access and reuse the data in the future. RDML incor-
porates several important types of metadata: sources, con-
tacts, license requirements, expirations and update informa-
tion, datatypes, data classes, handling instructions (e.g., what
to do with nulls, missing values, etc.), units and measure-
ments, and other information needed to produce the various
presentations.

Use of RDML addresses the problem of non-standardiza-
tion by defining standards for both data characteristics and
analytic routine interfaces. Standardization leads to compo-
nent reuse, automation of production, and more rapid devel-
opment of product enhancements. While the computer indus-
try has developed standards for file formats and function-level
interfaces, it has not developed general data format or con-
tent-analysis standards. For example, once data is input to an
application (whether spreadsheet, database or other), the user
may want to manipulate the data and see basic statistics for
the different line items (sums, averages, % changes, vari-
ances, and so forth), adjustments for standard changes (ad-
justments for inflation, conformance to industry indexes, % of
stock market averages, etc.), or standard ratios (debt/equity,
price/earnings, etc.) Because there is neither a standard gen-
eral data format, nor a standard analytic routine interface,
users currently create each of these manipulation routines
from primitive coding. In spreadsheets, they must input for-
mulas and conversion factors number by number, and in
databases, they must write SQL queries or other program-
ming routines to manipulate the data.

RDML provides both the data standard and the function
interface for manipulation routines. This means that a routine
can be written to apply to any line item that meets the condi-
tions it imposes, and these routines are reusable. Currently,
conventional spreadsheet macros (one analogue to RDML
macros 104) are typically only used in the spreadsheet for
which they were designed. The macros cannot typically be
used in another spreadsheet where the numbers may be in
different cells or in different units. RDML macros 104 are not
dependent on cell position, or human intervention to conform
data: they can be directly used by others for other data sets. If
a user writes a routine which, for instance, calculates and
graphs amoving average of a time series, it can be used by any
time series in any RDMIL document 102.

While solving documentation and standardization prob-
lems, use of RDML also addresses the problem of calcula-
tions occurring at too low a conceptual level by creating data
“objects” at the line item and document levels, whereas con-
ventional spreadsheets operate only at the cell (single num-
ber) level. For instance, calculations that may be common to
a set of data, i.e., a line item, may operate more efficiently
because they can be applied once, as opposed to being applied
individually to many different single numbers or cells. Fur-

US 9,262,383 B2

9

thermore, analytic routines (macros) can be combined,
applied successively, or used by inheritance to create new
routines. The line item orientation dramatically reduces the
number of formulas that need to be written (one per line
instead of one per number). It also increases the readability of
program code, because the user can review the logic at a
higher level of abstraction.

In addition to solving these problems, RDML reduces
costs, time, and complexity for operations on the side of the
data consumer, the data publisher and the program developer.
To utilize and manipulate data, typically, a user retrieving
data over the Internet views a text version of the data, prints
the data (in HTML, ASCII or PDF format), and then types the
numbers into a spreadsheet or database program. The RDML
data viewer 100 automates this process by making the data
immediately available to other programs as interpretable
data: the user does not need to retype it. Upon locating
numerical sets of data from multiple online sources, the data
viewer 100 automatically normalizes, collates, transforms,
and formats the data.

Some conventional systems make data available for down-
load as data in either a common spreadsheet format (such as
Lotus or Excel), or in a comma-delimited or other common
text format. This at least saves the user the necessity of retyp-
ing certain numbers, but creates a new problem of manipu-
lating the data to get it into a more usable form (e.g., normal-
ized, standardized).

As such, RDML (and its related data viewer) “normalizes”
data for added efficiency. Normalizing data is primarily a
matter of conforming key fields, including matching dissimi-
lar fields, resolving conflicts in categories, resolving the han-
dling of duplicates, etc. In order to be useful, data should be
conformed to a format that can be read by an application (such
as a graphing routine, or calculation routine). For example,
the application may expect data aggregated by year, whereas
the incoming data may be aggregated by month. The user
must manipulate the input to make it conform to the form
expected by the application. RDML performs these tasks
automatically, using embedded documentation regarding the
input data to make any necessary conforming changes to the
input. In the time series example above, RDML would aggre-
gate the monthly data into yearly data, using embedded docu-
mentation to determine whether the aggregation should be a
sum, an average, etc.

Additionally, comparing data is a primary use of spread-
sheets. Examples include comparing the financial statements
of different companies, comparing the statistics from difter-
ent states, and comparing different economic time series.
When these data categories come from different sources, they
are usually not directly compatible: the user must lay out the
data items on a spreadsheet or similar program in a manner
similar to assembling a jigsaw puzzle. As with normalization,
RDML uses documentation embedded in the various input
files to determine how different line items and values should
be collated.

Once data is normalized and collated, the RDML data
viewer 100 transforms the data automatically. Convention-
ally, users typically make a series of adjustments to the num-
bers in the data set. The input data may be, for example,
denominated in “millions of dollars,” while output is desired
in “billions of yen.” RDML provides a set of indicators for the
most common transformations, permitting automatic
machine translation of the numbers from their input state to
the state desired by the user.

A conventional method of formatting data for output on a
PC is to cut-and-paste the data to a formatting application
(word processor, graph generator, spreadsheet or other), and

20

25

40

45

55

10

then mark up the data to change the format to the desired
output. This is time consuming and not repeatable—if the
data is input again with a slight change, the whole formatting
process must be repeated. The RDML data viewer 100 avoids
the cut-and-paste approach by saving the original data in a
central storage object (described below) in the data viewer
100 and applying separate formatting instructions to create
different views 108. The user can switch among views 108
with a single mouse click and the program handles all format
and numerical conversions for the user.

In some of the more advanced database management sys-
tems, a “report-writer” approach is used. Like the RDML. data
viewer 100, this approach applies a template to a centrally
stored dataset. The problem is that the data sets are not stan-
dardized; a report writer template written for one dataset
cannot typically be used for another. RDML, however, pro-
vides for reuse of style sheets in the same manner it provides
reuse of data and macros.

In addition to the above-mentioned problems, RDML
solves problems relating to “live” connections of numerical
data involving multiple sources that typically require pro-
gramming expertise. Whether the aim is to draw numbers
from multiple sources over a wide area network (e.g., the
Internet) or over a corporate LAN, incorporating remote data
is complicated by many issues: connection protocols, pro-
gramming language dependencies, data type inconsistencies,
error handling, data transformations, etc. Programmers can
surmount these problems at a certain expense, but not in a
flexible way that permits reuse, and users again rely on cus-
tom programming. In response to the cost, time requirements,
and inflexibility of the custom programming approaches,
casual users resort to labor-based solutions. In a typical case,
a financial spreadsheet is created with, for example, ten
assumptions related to interest rates. Every time the spread-
sheet is used, the creator looks the numbers up in the news-
paper and types the results into the appropriate cells, and any
necessary transformations are made by hand. RDML
removes the need for custom programming and manual input
by providing a way to include numbers from remote RDML
documents 102 in normal formulas. The RDML data viewer
100 automatically looks to the specified address on the web to
retrieve the numbers, makes any necessary transformations
(for example, from yen to current dollars) and places the
result in the correct formula. In this way, an RDML document
102 or macro 104 can draw on multiple documents at once.
Because its documentation is machine-readable, it can be
read by multiple systems, none of which need be aware of the
physical layout or data types of the others.

Lastly, the use of RDML enables client-side processing
using Internet-supplied data thereby realizing a number of
advantages. After data is retrieved, analytic routines (macros)
are performed on the client side, as opposed to the conven-
tional approach in web-based data analysis, in which the
analytic routines are performed on the server side. Whereas
sensitive data and calculations can remain local in the RDML
data viewer 100, the user need not fear that sensitive data is
being misused by a company running a server, or that data is
being misappropriated over the web. Additionally, it
increases speed because updates to graphs, reports and
spreadsheets can be near instantaneous because there is no
need for the round-trip Internet transmission, or the loading
and execution of a routine on a busy server. Users may also
prefer local copies of data that they control and to which they
have immediate access.

L.A. RMML Overview

Methods and systems in accordance with the present inven-

tion provide macros and RMML, which allow numerical

US 9,262,383 B2

11

analysis routines to be written quickly, cheaply, and in a form
that is usable by a broad range of data documents in RDML..
RMML macros provide reusable user-defined calculations
for use in conjunction with RDMIL that automatically
manipulate and display numerical data contained in RDML
markup documents. RMML also allows spreadsheet type
macros to be posted as web documents, to be searched by
search engines, to be combined into more complex programs,
and to be reused with many data documents.

For example, a user viewing a chart having a series of data
in an RDML data viewer may apply, with one mouse click, a
macro to that chart and see an instantaneous (or nearly instan-
taneous) transformation of the charted series of data. Not only
is the data changed, but the titles, legends, footnotes, axis
scales and other properties are also changed. As a further
example, a user may be looking at a time series trend of
automobile sales in millions of dollars. By clicking on a
macro entitled “% change”, the chart recalculates itself
according the percentage change from period to period. The
y-axis title changes from “$ millions” to “% annual change”,
etc. Table manipulation macros may perform such functions
as combining two tables into one, sorting a table, searching
for certain line items and other database-like tasks. Other
transformation macros may perform other functions such as
word translation, data format translation, and report-writing.

RMML macros are highly reusable because they are made
available in a cross-platform, text-based, searchable, XML.-
compliant format. Because the macros are portable, they have
much greater marketability. RMML also builds into its lan-
guage tags for many types of documentation so that a macro
may be reused and understood by the original macro writer as
well as other users.

Conventional spreadsheet programs typically base refer-
ences on physical locations, a problem RMML avoids by
referring to numbers by their position in a chart or formula, or
by tag names, thus allowing the numbers themselves to be
anywhere in a document. RMML macros also use the mea-
surement and the meaning of numbers because RDML-tags
contain standard vocabularies to identify the measure, mag-
nitude, scale, unit, precision, class, etc. of the numbers, and
the RMML interpreter handles differences for the user.

Additionally, RMML builds error handling into its inter-
preter and makes available automated testing tools to help
increase the quality of the code. Users may also graphically
change parameters for the macros using check boxes, slider
bars, input boxes, and selection lists, and RMML makes it
easy for the author of a macro to add those visual components.

Below is a detailed description of RDML, the platform
upon which RMML macros run, followed by a detailed
description of RMML.

II. System Hardware Components

FIG. 2 depicts a data processing system 200 that is suitable
for use with methods and systems consistent with the present
invention. Data processing system 200 comprises a computer
201 and a server computer 203 interconnected via a network
214, such as the Internet, where the server computer 203 may
provide RDML documents 102 to computer 201. Computer
201 includes a central processing unit (CPU) 202, a main
memory 204, a secondary storage device 206, a display 210
and an input device 212.

The main memory 204 may include the RDML data viewer
100 which may be a personal computer-based program,
although one skilled in the art will appreciated that the data
viewer may reside elsewhere. In addition to the data viewer
100 which includes views 108 for display, the main memory
204 includes related software components that may be used to
input RDML documents 102, macro documents 104, and

10

15

20

25

30

35

40

45

50

55

60

65

12

style sheets 106 to the data viewer. It may include the RDML
document formatter 216 which a user uses to apply tags to
numerical data, and/or an RDML document server 218 which
provides RDML documents 102 to the data viewer 100. The
main memory 204 may also comprise an RDML document
editor 220 used to edit the files of RDML documents 102 and
RDSL style sheet editor 222 for creating style sheets 106. The
RDMI/XML search engine 224, which searches RDML
documents in response to queries, may also reside in memory
204 along with any additional plug-in applications 225. Each
of these components and their interactions are described
below in greater detail.

The memory 204 may include various software compo-
nents of the data viewer 100 and related components which
may be programmed in object-oriented languages such as the
Java™ programming language. The Java™ programming
language is described in further detail in “The Java Program-
ming Language,” 2" Ed., Ken Arnold, James Gosling, Addi-
son-Wesley, 1998, which is incorporated herein by reference.
For further description of the Java Language, reference
should be made to “The Java Language Specification,” James
Gosling, Bill Joy, Guy Steele, Addison-Wesley, 1996 which is
also incorporated herein by reference. However, one skilled
in the art will appreciate that other programming languages
may be used. The RDML data viewer 100 may download
RDML data documents 102 from many different sources such
as a local storage disk or from a server over network 214.

The secondary storage 206 may include the RDML image
database 226 which stores documentation tag data regarding
RDML document 102, and the RMML macro software devel -
opment kit 228 for developing macros. The secondary storage
may also store existing databases 230 for holding original
data from which RDML documents 102 are created. These
components may also be stored in main memory or onanother
remote computer and are also described in greater detail
below.

FIG. 2 also depicts a web server 232 on computer 203 that
interacts with the computer 201 via network 214. In one
system consistent with the present invention, the web server
232 sends RDML documents 102 over the network 214 and
may be connected to a disk array 234 which holds RDML. data
documents 102. This disk array 234 may receive data docu-
ments 102 from the database server 236 which may receive
data from database storage 238. Protocols used in the trans-
mission of information between the server 232 and the com-
puter 201 include, but are not limited to, HTTP and FTP.

One skilled in the art will appreciate that aspects of meth-
ods and systems consistent with the present invention may be
stored on or read from other computer readable media besides
memory like secondary devices, such as hard disks, floppy
disks, and CD ROM, or a carrier wave from a network (such
as the Internet). Additionally, one skilled in the art will also
appreciate that the data processing system may contain addi-
tional or different components.

II1. System Overview

FIG. 3 illustrates an RDML system consistent with the
present invention and the relationships between the various
components. These various components may reside in a
memory 204 on a computer such as computer 201. Existing
databases 230 store data that can be used to create RDML
documents 102, and generally the data is extracted into either
a “flat file” format (e.g., comma-delimited, or fixed-width
fields) or a form readable by Java Database Connectivity
(“JDBC”). RDML documents 102 may be structured to
model flat files so that a single RDMIL document 102 encap-
sulates a set of rows and columns. Examples of databases
include SQL server by Microsoft and Oracle 8 server.

US 9,262,383 B2

13

The RDML document formatter 216 is a graphical tool
used by the user to reduce the amount of manual labor
required to combine data and its documentation. The contents
of an existing database 230 may not be enough to create an
RDML document 102, because in one system consistent with
the present invention, RDML uses documentation of the con-
tents. Such documentation often may be found in a printed
volume and hence must be manually input and manually
combined with the data. The RDML formatter 216 allows a
user (or data publisher) to map data fields from a relational
database, flat file, spreadsheet file or text document to RDML
data documents 102. It also allows a data publisher to add
documentation to the data file (RDML data document 102)
itself.

The RDML image database 226 is a relatively small data-
base maintained by the RDML formatter 216 to hold infor-
mation necessary to recreate an RDML document 102 should
the underlying data change. It eliminates the need for the user
to manually input the documentation again because the
RDML image database 226 stores it.

An RDML document server 218 functions when RDML
documents 102 are being created dynamically. The server 218
queries the existing database 230 for the desired line items,
queries the image database 226 for documentation items and
instructions for constructing the RDML document 102, and
finally creates a valid, well-formed RDML document.

The RDML document editor 220 allows users to edit
RDML documents 102 which typically are ASCII text files
(which may contain UNICODE data). As such, they may be
edited by any text-oriented editor or word processor. This is,
however, a time-consuming and error-prone approach to
marking up an RDML (or any XML) file. A specialized
RDML document editor 220 allows a user to quickly make
changes, check for errors, and view information on the data
and metadata. The document editor 220 may operate over the
Internet: users possessing the correct permissions to modify a
file can make updates or changes to the underlying RDML
data document 102 by issuing commands from the RDML
data viewer 100.

An RDML document 102 may be an ASCII/UNICODE
text file used to transmit data and metadata to the RDML Data
Viewer 100. It can be stored locally, or can be transmitted over
network 214 such as a corporate LAN or the Internet (using
HTTP, FTP, email, etc.). To be a valid RDML document 102,
the file conforms to the RDML Document Type Definition
(“DTD”) which is described in detail below. The DTD
describes required and optional data elements, their ordering,
syntax, and the controlled vocabulary for use in certain data
elements. DTDs in general are also described in “XML:
Extensible Markup Language,” Elliotte Rusty Harold, IDG
Books Worldwide, 1998.

The RDML data viewer 100 functions as a combination
RDML and HTML browser, object-oriented spreadsheet,
report-writer, and application platform. The browser func-
tions read HTML or RDML documents 102; HTML docu-
ments are rendered immediately in a browser window, while
RDML documents are first cached in an internal data object
(conforming to the DOM—“Document Object Model”—
standard discussed below) and then rendered in views 108
selected by the user. The default view is typically a chart and
a tree listing, although several other default views are avail-
able. The RDML data viewer 100 uses the cached RDML data
objects to create views 108, employing a variety of transfor-
mation and manipulation objects to get the data to match
either the form expected by the view, or to match the form of
other data objects with which it is being combined.

15

20

25

30

40

45

55

14

The RDML Macro Software Development Kit (“SDK”)
228 allows a function designer to create functions that can be
applied generally to any data document that contains the types
of data necessary for the function. The SDK is a collection of
macro-writing tools, including an IDE (“Integrated Develop-
ment Environment”), an editor, an object browser, and a vali-
dation tester.

RDML generally separates the form of data from general
calculation routines that operate on that data. By separating
format from functions, both the data and the functions can be
made reusable. In conventional spreadsheets, for example,
numbers can be placed in arbitrary cells selected by the cre-
ator. If a second developer decides to create an analytic func-
tion, that developer must know what row and column each
number is in. That routine will then not work with another
spreadsheet unless the exact same row and column structure
is followed.

Applying functions generally creates one form of software
reuse: users need not tell the function where their data is (the
approach of “wizards” in traditional spreadsheets). A second
form of reuse is that gained by inheritance: function develop-
ers can choose the existing function that most closely matches
what they are trying to do, and simply make the necessary
edits to create the desired new function. The SDK 228 permits
a third type of reuse in the ability to attach to remote data
documents and remote macros on the web to take advantage
of these extra resources and to provide real-time updating of
data and functions.

RMML macro documents 104 are text documents that
contain routines just as RDML data is contained in a text
document. This document contains the heart of the calcula-
tion: the specification of operations on numbers, such as a
formula, an ordered list of other macros to perform, or list of
instructions.

RDSL style sheets 106 act as templates for output reports.
The RDML data object (discussed below) in the RDML data
viewer 100 can be placed into a report using one or more
different style sheets. RDSL, a fully compliant implementa-
tion of XSL, allows a data publisher to provide multiple report
formats for its data. They are reusable in that a style sheet
written for one RDML data document 102 can be used for
another if the specified restrictions are met. For example, a
style sheet for a time-series data set can be used for another
time series data set. The style sheet editor 222 is basically a
report-writer because the user can graphically compose a
report from a sample document, specify the types of RDML
data documents 102 that this report can apply to, automati-
cally create a style sheet 106 when the result is acceptable,
and then use the resulting style sheet to create a report from
any qualifying RDML data document 102.

The RDML search engine 224 searches RDML documents
102 similarly to the way HTML search engines search HTML
documents. HTML search engines pick up key words, but can
only tell a user that a particular document contains the
requested word(s). They cannot, however, provide query ser-
vices. For example, a user may wish to search the Internet for
“all financial statements of computer services companies
which have revenue growth >10%,” and the RDML search
engine 224 provides this capacity. The RDML Search Engine
224, however, does not index only keywords like the HTML
approach, but also the element names and key attributes. This
permits searching for numerical values, or posing complex
queries regarding the content and/or context of the data. The
RDML search engine 224 thus acts as a generalized query
processor for RDML data document 102, RMML macros
104, and RDSL stylesheets 106. Some aspects of the search

US 9,262,383 B2

15

engine 224 are described in greater detail in co-pending U.S.
Provisional Patent Application Ser. No. 60/183,152, filed on
Feb. 17, 2000.

As mentioned earlier, each view 108 in the RDML data
viewer 100 is essentially a separate application denoted on
FIG. 3 as various RDML Plug-in applications 225. The chart
view, for example, is a separate charting application that has
been “plugged in” to the RDML data viewer’s basic infra-
structure of Internet browser, XML parser/processor, RDML
transformation and manipulation objects, internal object
management architecture, interfaces to other applications,
and graphical user interface (described below). For example,
a mapping component can be plugged into the panel in which
the chart is seen. Subsequently, when a user clicks on a line
item, the colors of the different countries or states will change
to show a thematic map, or different dots will appear, etc. The
RDML data viewer 100 may be designed in modular fashion
to permit changing or adding component applications to
leverage off the common components.

IV. System Details

With further reference to FIG. 3, several of the components
(excluding RMML. and RDSL components) are described in
greater detail below. The existing databases 230 may be rela-
tional databases, object-oriented databases, or any other type
of database. RDML tags in RDML documents 102 add docu-
mentation to the types of pure data found in relational data-
bases. Since the data that already exists in relational databases
can be used to create RDML documents 102, the data may be
made available to either the RDML formatter 216 or the
RDML server 218 and be in a flat file format (rows and
columns).

For connections, both the RDML formatter 216 and the
RDML server 218 read Open Database Connectivity
(“ODBC”) and IDBC database sources. The flat file aspect is
based on the idea that RDML documents 102 effectively
model a basic row and column matrix. To produce an RDML
document 102, therefore, the original data source may pro-
vide a single table, or create one with a query. Relational
linking is possible with RDML documents 102, through a
server to a relational database, or indirectly through hyper-
links to other RDML documents or hyperlinks to RDML
document servers 218. This is similarto many database appli-
cations: data is collected from various underlying tables to
create a single table or screen to show the user. The data table
to be used as a source for an RDML document 102 may be
oriented to have the fields be one of three basic exemplary
RDML data table types: time series, category, or X-Y plot
described below.

With reference to the RDML formatter 216, once there is a
flat file data table of data points in the existing database 230,
an RDML document 102 can be created by adding tags that
contain documentation regarding the data table. The informa-
tion contained in these tags are maintained in a separate data
table from the original data points. The RDML formatter 216
is an application that assists a user in selecting the proper
documentation tags, saves the tags in a separate database (the
RDML image database 226), and creates the actual RDML
document 102.

FIG. 4 isa screen shot that shows how the RDML formatter
216 assists the user in “tagging” data, i.e., adding metadata
that applies to the line items. In one implementation consis-
tent with the present invention, for each line item of data,
there are at least 18 different potential attributes (described in
detail below) applied using the radio buttons 402. When auser
selects a radio button 402, the formatter 216 supplies a
description 404 of the selected attribute. Upon selection of a
radio button 402 from the left-most box, the user is presented

10

15

20

25

30

35

40

45

50

55

60

65

16

with a list of the possible values in the middle option box 406.
The user may either double click one of the options to add it
as an attribute of the selected line item, or type in a new value
in the text box at the top of the middle option box 406. The
formatter 216 automatically updates the line item table 408
which, in this instance, displays the line items’ 1D, title,
format and Y-axis title (attributes which are discussed below).

FIG. 5 shows a screen shot of the database tab and docu-
ment management screen accessed by atab 502 onthe RDML
formatter 216. This screen manages RDML documents 102
that can be created from a relational database 230. The user
can specify a list 504 of data tables in a relational database and
have the RDML formatter 216 create RDML documents 102
for each using default properties. From that point, the RDML
formatter 216 is used to modify the defaults. The user may use
the RDML formatter 216 to select tags from scratch (as
shown in FIG. 4) for a document 102, but this puts an unnec-
essary burden on the user to remember which properties are
appropriate.

The formatter 216 references a database 230 (shown on
FIG. 3) specified by the documentation URL 506. The data-
base 230 holds a list of data tables, and the formatter 216
inserts a table 504 that holds stores information regarding the
data tables into the database 230 for later reference. This table
504 is referenced by the documentation table name 508.
Similarly, the formatter 216 stores a list of line item attributes
408 for the database 230 in the database which are referenced
by the 1i_data URL 510.

The RDML image database 226 contains documentation
that relates to a separate set of data records in the existing
database 230. The RDML formatter 216 creates and main-
tains the RDML image database 226. The RDML image
database 226 standardizes the process of documenting data
documents, and provides a controlled vocabulary for the
metadata. The RDML image database 226 also performs
document management and tracking, update and version con-
trol, error checking, input validation, and the creation of
status reports.

The image database 226 contains a list of RDML docu-
ments 102 that it can produce. The original data may be in flat
files, relational tables, or a table that results from a query on
a relational database. The image database 226 contains docu-
ment metadata that references the original document table or
flat file in the original database 230. Documentation informa-
tion contained in the image database 226 is added to this data.
It further includes line item set metadata for the set of line
items, documentation that is typically of a more technical
nature and applies to the line item set as a whole. Examples of
such information is table types, field definitions (“x values™)
and hyperlinks that apply to the line item set as a whole. (A
line item set may be generally analogous to a table; it is a
collection of line items, which are analogous to records in the
database world.)

The image database 226 also includes line item metadata
that references the individual records of the original docu-
ment table or flat file in the original database 230. There may
be a pointer from each line item’s metadata record to the
corresponding record in the original data table. Each line item
includes the fields of the original record, plus, in one imple-
mentation consistent with the present invention, at least 18
additional fields that contain “attribute” documentation:
object types, unit designators, hyperlinks, footnotes, and so
forth. A listing of exemplary attributes of a line item is
described below.

FIG. 6 illustrates steps used by the data viewer 100 when
accessing the RDML document server 218. The RDML
server 218 occupies a middle position between a database

US 9,262,383 B2

17

server 230 and a user’s data viewer 100 or web browser.
Although one architecture for RDML. is to have RDMI docu-
ments 102 served from disk-based text files, users may some-
times wish to create RDML documents dynamically in
response to queries. The tasks of executing the query and
delivering a resultin RDML document form are performed by
the RDML server 218. To do so, a user submits the data
request to the server 218 via the data viewer 100 (step 602).
The RDML Server 218 is a server application called by a web
server (not shown) which fields the user’s request. The
RDML server 218 queries the database 230 using known
techniques (step 604), and the database returns the results to
the RDML server (step 606). The server 218 then creates an
RDML document 102 (step 608) and returns the RDML
document to the web server which transmits the results to the
viewer 100 (step 610).

The RDML document editor 220 permits users to edit the
actual elements and attributes of an RDML, RMML, or
RDSL document (102, 104 and 106). The documents may be
presented in a tree view for selection and direct editing. A
text-based window may display the contents of the selected
document for editing. Besides basic editing, it performs a
number of utility functions: (1) search and replace, (2) vali-
dation, (3) well-formedness testing, (4) hyperlink validation,
(5) cut-and-paste of elements, and (6) replacement of ele-
ments with defaults.

IV.A. Internal Data Viewer Architecture

FIG. 7A depicts a schematic diagram of the internal archi-
tecture and program flow of the RDML data viewer 100, and
FIG. 7B depicts the meaning of each symbol type in FIG. 7A.
For each numbered component, a description is given which
provides further details on that component’s input and output,
internal decision process, storage format, object architecture,
and program flow.

Before fully describing FIG. 7A, however, itis important to
understand an overview of the steps involved, which is
depicted in FIG. 8 and discussed in conjunction with FIG. 7A.
FIG. 8 is a flowchart describing steps in a method for down-
loading, processing and displaying a RDML document 102 in
accordance with the present invention. FIG. 8 describes an
overview of the steps involved, and each related component is
subsequently described in further detail with relation to FIG.
7TA. First, the RDML reader 704 finds and receives an RDML
document 102 in text form formatted according to the struc-
ture of the RDML DTD 702 (step 802). The RDML Reader
704 may be a class that runs in a separate thread and has

10

15

20

25

30

35

40

45

18

methods for checking the RDML document 102 type (Time
Series, Category, XY) and handling errors. The RDML
Reader 704 then calls the XML parser 706 which parses the
text (step 804). The RDML processor 708 receives the parsed
text from the XML parser 706, error checks it and creates an
object based on the data and structure in the received text.
(step 806).

The RDML processor 708 transfers the resulting object to
the X-value transformer 710 which performs type-checking
and manipulates the fields (x-values) of the data so that it may
be displayed and stored coherently and simultaneously with
other active objects of the same type (step 808). The X-value
transformer 710 makes sure that the data values to be graphed
against the x-axis are in common units. For example, if docu-
ment A is an annual time series and document B is a quarterly
time series, the X-value transformer 710 in this case would
use the “li_aggregation” attributes of the line items in docu-
ment B to aggregate four quarters at a time into annual data.
As a second example, if document A is a category document
with x-values equal to stock ticker symbols (F, IBM, XON,
etc.), and document B contains x-values denominated in com-
pany names (Ford, International Business Machines, Exxon,
etc.), then the x-value transformer 710 will use the “li_class”
attributes in the line items of each document to match them
up. The X-value transformer 710 sends the object to the
primary data store 712 (“PDS”) for storage with other active
objects of the same type (step 810). The views (716, 720, 724
and 725) then display and present information using data
from the active objects in the PDS 712 (step 812).

Details of the steps and components involved are now
discussed in conjunction with FIG. 7A. Described first is an
RDML document 102 defined by the RDML Document Type
Definition. Description of the various software components
of the data viewer 102 follows.

The data and metadata of an RDML document 102 may be
formatted inside tags which denote the beginning and ending
points of each data element. The element tags may also
include attributes to be applied to the data elements, a descrip-
tion of what sub-elements may be found within an element,
and vocabulary choices for different attribute values.

A full sample RDML data document 102 is shown at
Appendix B. Shown below is a fragment of an RDML docu-
ment 102 that supplies the data for one line item in the docu-
ment. Note that element tags are designated within angle
brackets (“<” and “>"), and that attributes are listed that can
be applied to the data.

<line_item
li_ID =<1”

li_legend = “Department of Energy”
li_title = “Outlays - Dept. of Energy”

li_cat ="

y_axis_title = “$ in Thousands™
level =<1

format = “# ##0;(# ##0)”
relation = “Parent”

li_notes =

li_desc =

li_prec = “-3”

li_unit = “$”

li_mag =“3”

li_mod = “in”

li_measure =«

li_scale =«

li_adjustment =

li_aggregation = “*>
<data_y>

2754567,2699717, 2726457, 2578954, 2343297, 2252927, 2474440, 2392904, 2392536,2200326,
2298612, 2303643, 2233062, 3229510, 3840973,5049308, 6412986, 7441295,7261157, 11756883,

US 9,262,383 B2

19

-continued

20

11657178, 10590471, 10991261, 10587245, 11026443, 10692802, 11166039, 11386923,12083898,
12478820, 15522633, 16941547, 17839298, 17617000, 16203000, 14467000, 14366000,15240000,

15190000, 14938000, 14412000, 14556000
</data_y>
</line_item>

33

Inthis example, the 18 lines with an “="are “attributes” of the
<line_item> element, and essentially, the attributes provide
machine-readable documentation for the data values speci-
fied in the sub-element <y-values>. This particular line item
describes “Department of Energy outlays in thousands of
dollars,” but the specifics of the set of attributes are described
below in conjunction with the RDML Document Type Defi-
nition 702 which describes the structure and elements of a
RDML document 102.

RDML documents 102 may be produced by an ordinary
text editor, by the RDML data formatter 216, or by the RDML
data server 226. (XML browsers other than the RDML data
viewer 100 are able to do little more than echo the text input
to the user’s screen since they cannot interpret the RDML
tags.)

IV.A.1. Document Type Definition

FIG. 9 graphically shows elements of the RDML Docu-
ment Type Definition 702. In one implementation consistent
with the present invention, RDML documents 102 conform to
the rules provided by the DTD 702 (also shown on FIG. 7). In
accordance with one implementation of the present invention,
an RDML DTD 702 is shown at Appendix A. Attributes and
elements of the DTD 702 may also be seen in the full sample
RDML document 102 in Appendix B. Those two Appendices
A and B are useful for examining specific attributes and
elements of the DTD 702.

The DTD 702 data structure is optimized to provide infor-
mation that is needed in order in which it is required, to reduce
the learning required on the part of new users to RDML
formatting, and to avoid unnecessary duplication. The first
line of the DTD 702 in Appendix A starts with “<?xml
encoding="UTF-8"?>" because all XML documents start
with a line that tells the client application, in this case the data
viewer 100, what type of document it is and the version of
XML.

With further reference to FIG. 9, the DTD 702 used to
define RDML data documents 102 is structured in a hierar-
chical tree structure of elements. Each element may include a
list of attributes (displayed in Appendix A, but not shown on
FIG. 9) and/or an association with one or more sub-elements.
The DTD 702 specifies which attributes are required and
which are optional for any embodiment of the DTD. Depend-
ing on design constraints, the required and optional elements
may vary. At the highest level, the DTD 702 has two elements
descending from a root element, <rdmldoc> 902. The first
element, <rdmldoc_header> 904, contains the metadata for
the document as a whole and the second, <line_item_set>
906, contains the set of the line items.

In one implementation consistent with the present inven-
tion, the <rdmldoc_header> element 904 contains several
attributes itself, and the optional sub-elements <data_source>
908, <formatting_source> 910, <rdml_source> 912,
<license_terms> 914, and <link_set> 916, each describing
some aspect of the source of the data. In this implementation,
the <rdmldoc_header> 904 element may include ten
attributes describing document information as a whole. These

attributes are “rdml_doc_ID,” “doc_title,” “timestamp,” “ver-

10

15

20

25

30

35

40

45

50

55

60

65

2 2 <

sion,” “expiration,” “freq_of update,” “num_line items,”
“num_datapoints,” “x_indexes,” and “first_li_with data.”

The rdml_doc_ID attribute is the unique identification of
the RDML document 102 and is typically a file name or URL.
The doc_title is a plain language description of the document
that will appear at the top of reports and views for the docu-
ment for use by a user. The timestamp is typically generated
by the application that created the document and may denote
the time that the document was created or the time the data
was accessed for creation of the document. The version
describes which variant of the RDML document 102 it is and
may be named by the creator. The expiration describes the
date and time that the data in the document 102 may no longer
be relied upon, typically when the next update is expected to
be released. Freq_of update describes how frequently the
document is updated and may be used by applications that
want to schedule updates to the data. The next two attributes,
num_line items and num_datapoints, are integers describing
the total number of line items and number of data values
respectively. These attributes are optional and may be used as
a “checksum” by a receiving application to ensure that the
data has not been accidentally changed or corrupted.

The next field, x_indexes, denotes three data fields to use as
representative data fields in the tree view 720 (described in
detail below). X_indexes is a comma-delimited string of three
integers, each of which is an index to a selected field. For
efficiency, the indexes may denote the end of the list of fields
so that, for example, “-3,-2,-1" shows the last three fields in
the tree view 720. Indexes based on the end are useful because
most people reading a time series want to see the most recent
data. Along, similar lines, the first_li_with data attribute is an
integer index that points out which line item is to be displayed
on the chart when the document 102 is loaded into the data
viewer 100.

The <data_source> 908, <formatting source> 910,
<rdml_ source> 912, <license_terms> 914 elements, sub-
elements of <rdmldoc_header> element 904, may optionally
contain one or more of sub-elements of <contact_info> 918
which contains contact information. This element can be used
by the target application to create an email letter, update a
contact list, or populate a database of information sources.
The same element structure is used for all contact information
sub-elements 918 so that the application that created the
document 102 only has to create one structure.

In one implementation, this contact information is repre-
sented by eleven attributes: “role,” “name,” “company,”
“address,” “city,” “state,” “zip,” “country,” “email,” “form,”
and “comments.” Role is the role played by the party in the
creation of the document, i.e., “data source” for the <data_
source> 908, “formatting source” for the <formatting
source> element 910, etc. “Form” determines whether the
hyperlink is a “simple” link or “extended” link. Under the
Xlink specification, a language designed to implement links
between XML documents and resources, hyperlinks may be
simple or extended. Xlink is described in “XML IES Pro-
grammer’s Reference,” Alex Homer, Wrox Press, 1999,
which is incorporated herein by reference. Simple links are
traditional “jump” hyperlinks in which clicking on that link

US 9,262,383 B2

21

will close the current page and open the target page. Extended
links are application-specific and can identify different types
of resources, such as multimedia files and other non-docu-
ment resources.

The contact information in the <data_source> 908
describes who or what collected the data to create the original
database, while the same attributes in <formatting_source>
910 describe who or what added the RDML tags to the origi-
nal data to create the RDML document 102. The same infor-
mation in <rdml_source> 912 describes the person or com-
pany that created this particular document and made it
available to the outside world.

In addition to the <contact_info> 918 sub-element in
<license_terms> 914 which describes the contact informa-
tion regarding the licensing of the information, the <license_
terms> element has its own set of licensing-related attributes.
These attributes include: “copyright_cite,” “holder,”
“license_type,” “warranty,” “disclaimer,” “terms,” “date,”
“email,” “state,” and “country.” The copyright_cite is a string
that may appear on reports regarding ownership of the par-
ticular data set in the RDML document 102. A typical
example might be “Copyright 2000, e-Numerate Solutions,
Inc. All Rights Reserved.” The holder attribute lists the full
legal name of the owner of the copyright. License_type lists
the type of license, such as “none—proprietary and confiden-
tial,” “public domain,” “pay per use,” etc., and terms lists the
payment terms, if any, such as “$1 per download.” The infor-
mation in these attributes may be used by routines associated
with the RDML processor 708 to automatically track and
implement licenses and payments.

Another sub-element of the <license_terms> element 914
is the <linkset> element 916 which, in one implementation,
has two attributes and its own sub-element <link> 922. A
<linkset> 916 is a collection of hyperlinks. These hyperlinks
may be either HTML files or RDML files. The individual
<link> elements 922 hold the actual links and attributes. The
<linkset> element’s two attributes are form, described above,
and href| a standard string for URL or web address, and they
designate the HTML or RDML page where a page of hyper-
links may be found. This is useful when the creator does not
want to list all of the hyperlinks in the document 102 itself.

The <link> element 922 describes hyperlinks to other
documents and contains, in one implementation, nine
attributes: “form,” “href,” “behavior,” “content-role,” “con-
tent-title,” “role,” “title,” “show,” and “actuate.” These link
related attributes are described in the XML IE5 Program-
mer’s Reference, pp 95-97. The title is a string that appears in
the application as a hyperlink title. For example, in an HTML
browser, it will appear as highlighted, underlined text. Actu-
ate specifies when the link should be traversed—when the
resource that the link points to is retrieved or accessed, and
show specifies how the target resource will be displayed.
Behavior specifies instructions that control the behavior of
the link in the way that the content is displayed or the link is
traversed, and role describes what role the target resource
plays in the link. Content-role and content-title are alternative
places for the title and role, but are not specified in Xlink
standards.

Finally, <rdmldoc_header> 904 may have its own <link-
set> 916 having <link> elements 922. RDML allows users to
attach hyperlinks to different elements such as an entire docu-
ment, a particular line item, or other element in the RDML
document 102. The reason for the multiple places that hyper-
links may be placed is so that the user can view in one place
all the links that apply only to the element under consider-
ation. For example, an RDML document 102 may contain the
data for a company’s financial statement. The creator of the

30

40

45

55

22

document may decide that certain links apply to the whole
company (links to product lines, competitors, etc.) and that
others only apply to single line items (such as a link attached
to the “Equipment Leasing” line item that points to the foot-
note for that line item or an accounting regulation applicable
to that account). Even though they are attached to different
elements, the links may have the same form. Another reason
for multiple linkset elements is to facilitate keeping links
together with their logical owners.

Continuing to refer to FIG. 9, on the line item side of the
<rdmldoc> 902, the <line_item_set> 906 which contains
information on the collection of line items in the RDML
document 102 also contains several attributes and several
elements. These attributes include: “line_item_set_type,”
“time_period,” “character_set,” “missing_values,” “null_val-
ues,” “zero_values,” “dates_values,” and “percentages.”

The first attribute, the line_item_set_type, is, in one imple-
mentation, an important attribute which classifies the line
item set into one of three types: time series, category (or cross
tab), and x-y plot. Generally, the “type” in this context is the
characterization of the x-axis values and whether they repre-
sent a time series, a categorization, a x-y plot or other. These
line item set types are described in detail below in connection
with the x-value transformer 710 which manipulates line
items of the same set type. Generally, line item sets of differ-
ent line item set types may not be actively manipulated
together. If the line item is a time series, valid lengths in the
time_period attribute may be years, quarter, months, days,
etc.

Character_set designates which standard character set is
represented, thereby allowing for support for foreign lan-
guages. Missing values holds a designator for the numerical
value that represents a missing value, because many views of
the data, in particular chart views, need to know which num-
bers represent blanks. Otherwise, a blank might be inter-
preted as “0.” Null_values designates the character to be
treated as null so that it is not confused with “not applicable,”
or “missing” or “0.” Finally, zero_values designates charac-
ters that should be interpreted as “0,” and not “null,” “miss-
ing,” “not applicable,” etc.

The <line_item_set> 906 has, in one implementation, sev-
eral sub-elements including <data_x> 924, <li_class_set>
926, <linkset> 916, and one or more <line_item> elements
928. At the line item set level, metadata regarding line items
as a set is shared among all the line items so that the data need
not be repeated. In particular, the <data_x> element 924
contains field information common to all line items in the line
item set. The <data_x>element 924 includes the x-values and
information regarding the x-values of the line items in the set
of'line items in the RDML document 102. For example, if the
line item set is a time series, the x-values may represent the
years, months or other timelines (e.g., 1990, 1991, etc.) listed
across the bottom of a chart with which all of the data is
associated. Because this information is the same for each line
item in the line item set, it is only included once in the RDML
document 102. In one implementation, in addition to the
actual x-values, <data_x> 924 also contains the following
attributes: “x_title,” “format,” “x_notes,” “x_desc,” “x_prec,”
“X_unit,” “x_mag,” “x_mod,” “x_measure,” “x_scale,’
“x_adjustment,” and “x_links.”

In <data_x> 924, x_title is the title displayed on the x-axis
asthe datais displayed on a chart. Format is a string providing
a template for the default representation of the x-axis values.
The strings are those familiar from spreadsheet programs
(examples may also be seen on FIG. 4):

#—digit(s), zeros suppressed

0—digit(s), zeros displayed

29 <

US 9,262,383 B2

23

—decimal point

,—separator

A-z, other characters—displayed literally.

Other formatting codes can also be used (e.g., codes used in
scripting languages). X_notes may contain miscellaneous
footnotes regarding x-values of the line item set, while x_desc
may describe additional description regarding the x-axis val-
ues.

The x_prec attribute describes the precision or number of
significant digits for purposes of axis label display. In this
attribute, negative numbers cause rounding of amounts
greater than zero. For example, a precision of “2” will display
a number as “8,254.43”. That same number with a precision
of “-2” will be displayed as “8,300.” The underlying repre-
sentation of the number will be the full value; only the for-
matting and representation on the screen will change. The
data viewer 100 uses this primarily for formatting the axis
labels, but the attribute is available for default formatting as
well in other uses such as reports, footnotes, etc.

The subsequent attributes, x_unit, x_mag, x_mod, x_mea-
sure, X_scale, and x_adjustment, represent the meaning of the
x-values and are used by the data viewer 100 for manipula-
tion, reconciliation and display with other RDML documents
102. In RDML, numbers are collectively described by these
attributes which describe the numbers’ units. They are as
follows:

Unit: the physical unit of the numerator

Magnitude: the size of the numerator

Modifier: relation of the numerator to the denominator

Scale: the size of the denominator

Measure: the physical unit of the denominator

Adjustment: special qualifier (i.e., inflation adjusted)

For example, a line item reported to represent “$ in thousands
per million people” can be represented as:

[1 $US](1,000)
[1 person] = (1,000,000)

Therefore, the attributes of the line item are:

Unit: $US
Magnitude: 1,000
Modifier: /
Measure: 1 person
Scale: 1,000,000

Access to these attributes for line items provides enormous
power to the data viewer 100. It facilitates the interpretation
and transformation of the numbers. It allows multiple lines to
be placed on a single chart without conflict and allows macros
to be applied without the requirement of human intervention
to answer questions about the units. It further allows reporting
templates to make automatic adjustments to provide the most
readable reports. In particular, the data viewer 100 uses these
attributes to construct y-axis labels and descriptors when the
user has made a transformation and the “y_axis_label”
attribute is no longer appropriate.

A standard vocabulary for units and measures may be used
for efficiency, and magnitude and scale may be more simply
represented as a power of 10, e.g., 3 for thousands, 6 for
millions, etc. This permits more rapid transformations and
eliminates potential confusion of variant usages and spellings
(e.g., million, mille, MM, etc.)

w

20

25

40

45

50

55

60

65

24

For an example of the use of these attributes, suppose the
RDML data viewer 100 has plotted the following value/mea-
surement:

426 US Dollars (in thousands) per Hour, adjusted for infla-

tion (1996=100).

The user now wants to convert this to:

“X” Italian Lira (in billions) per Day, in nominal lira
where “X” is the value to be calculated and the rest of the line
is the measurement. The data viewer 100 makes this transfor-
mation automatically for the user because it has conversion
factors for the following:

RDML Attribute: Begin: End: Conversion factor:
Unit US Dollar Italian Lira ~ A* 0.0000234
Mag Thousands Billions A* 1,000,000
Mod per per A*1

Scale Hour Day A* 24

Measure 1 1 A*1

Adjustment Adjusted for infl. Not adjusted A* annual factor
Value 426 1.189

The data viewer 100 multiplies the conversion factors (or
performs any other appropriate mathematical operations) to
manipulate the display. The user does not have to look up each
of the conversion factors, marshall them into the correct
sequence, do the arithmetic, and make corrections such as
rounding adjustments. The user may simply select a new unit,
magnitude, etc. from a drop-down box and make a selection.

FIG. 10 illustrates steps used by the data viewer 100 to
manipulate the numerical information in an RDML document
102 to produce a desired transformed display. First, the data
viewer 100 locates the RDML document 102 (step 1002). The
document may be located either locally or online using a
URL, the search engine 224 or any other technique. Next, the
data viewer 100 selects and accesses the desired document
102 (step 1004). The data viewer 100 then accesses the line
item that needs to be transformed (step 1006) and determines
the desired transformations (step 1008). The desired transfor-
mations may be received from a user or may be determined by
the data viewer 100 automatically to, for example, accommo-
date the addition of a new document 102 to a display of a
current one. The data viewer 100 accesses the unit, magni-
tude, modifier, scale, measure and adjustment attributes of the
document or line item to be transformed (step 1010). Using
these attributes, the data viewer 100 determines the conver-
sion factors, if any, for each (step 1012). These conversion
factors may be stored locally or retrieved online over a net-
work 214. The data viewer 100 then multiplies the conversion
factors to transform the numerical data into the desired dis-
play (step 1014) and displays the transformed line item or
document (step 1016). If more than one line item is to be
displayed, the data viewer 100 may repeat these steps so that
all appropriate line items may be transformed to the desired
display format (step 1018). Similarly, if more than one docu-
ment 102 needs to be transformed, the steps may be repeated
for each document. In this way, documents 102 having dif-
ferent numerical sets may be automatically manipulated for
simultaneous display or quick transformation of display for-
mat without human intervention. The system automatically
resolves conflicts between different documents in different
formats by transforming them into one desired form.

In one implementation, when the system converts one unit
to another unit, it converts the original source unit to a base
unit known by the system, and then converts the base unit to
the target unit. The system stores conversion factors from
base units to other units in a unit list XML file, a portion of

US 9,262,383 B2

25

which is shown at Appendix C. For instance, suppose the base
unit used by the system for length is “meters,” and numerical
values are to be converted from “yards” to “miles.” The
viewer 100 converts the yards to meters using the stored
conversion factor, and then from the meters to miles using the
appropriate stored conversion factor. In this way, the unit list
file need only contain conversion factors from the base unit to
various other units, and need not list a conversion factor for
every possible combination between various units.

The structure of the unit list file is as follows: a <unitlist>
element is the root, and it has one level of child nodes, each of
which is a <unit> element. The unit elements each have a
number of attributes and elements that describe the charac-
teristics of that unit necessary to convert it into another unit or
set of units.

The conversion element contains the attributes necessary
for making a conversion where the source unit and the desti-
nation unit are both of the same type. For example, converting
“miles” to “inches” is simply a matter of finding the correct
multiplier to apply to the number of miles, because both units
are measures of type “length.”

The conversion element contains six elements: (1) “con-
v_target” describes the target unit of measurement that the
following conversion factors will bring you to, (2) “conv_fac-
tor” is the number to multiply by the source value to arrive at
the destination value, (3) “conv_constant™ is the constant to
be added to the product of the source value and the conversion
factor. For example, in the conversion formula for Fahrenheit
to Centigrade (F=32+9/5 C), 32 is the “conv_constant”, (4)
similarly, if the conversion involves alogarithmic conversion,
the necessary factors are included in “conv_log”, (5) “conv_
source” is a description of the standards body that set forth
this particular conversion factor, and (6) “conv_href” con-
tains the URL for the approving standards body.

The type element contains one of the following text strings:
(1) Length (base unit=meter), (2) Area (base unit=square
meter), (3) Volume (base unit=cubic meter), (4) Mass (base
unit=gram), (5) Time (base unit=second), (6) Temperature
(base unit=centigrade), (7) Energy (base unit=joule), (8) Cur-
rency (base unit=$US), (9) Compound (no base unit), (10)
Diverse (no base unit), (11) Collection (no base unit), and
(12) Occurrences (no base unit).

The Compound and Diverse types are constructed from
one or more of the basic units. Compound types are simple
combinations of others. Example: “miles per hour” is a com-
bination of a length unit and time unit. In order to convert a
Compound type into another type, it is necessary to be able to
make the necessary conversions of the decomposed units.

Diverse types are those that are constructed of descriptions.
For example, an “ohm” is an electrical unit described as “the
resistance offered to an unvarying electrical current by a
column of mercury at the temperature of melting ice, 14.4521
grams in mass, of a constant cross-sectional area, and 106.3
centimeters in length.”

A Collection type is a collection of persons, places, things,
etc. For example, a data series denominated in “people in
millions” means that one unit of this type is a collection of one
million people. Collection types can use any of the conversion
elements. For a simple conversion example, suppose there are
2.4 people per family in a sample. Then “people” could be
converted to “families” by a simple division by the 2.4 con-
version factor.

An Occurrence type is a collection of events. “Cycle”
would be an Occurrence type that could be divided by “sec-
onds” to produce a compound “cycles per second” unit of
measurement.

10

20

35

40

45

55

26

The “subtype” element is for finer distinctions among
types. The “plural” element is for constructing new titles,
legends and labels at the completion of a conversion opera-
tion. An “alias” element is provided for enabling conversions
where data has been entered in a common, but nonstandard
form. For example, tables often use “in” instead of “inches.”
The “desc” element is provided so that a plain language
description can be given the user. The “icon” element pro-
vides a place for giving the unit an icon to be used in lists,
drop-down boxes, etc.

Referring back to the elements and attributes of FIG. 9, in
<x_data> 924, there is an x_links attribute which may be a
comma-delimited string of URL’s for linking to other
sources.

In addition to this element, the <li_class_set> 926 element
represents the set of line item class elements and, in one
implementation, has no attributes but has one or more sub-
elements representing line item class, <li_class> 930. These
line item class tags specify categories in various classification
systems to which the numbers belong, such as “<US Dol-
lars>" or “<Total Revenues>". The data viewer 100 uses these
class tags to select which macros can apply, to adjust report
formats, and to make the correct selections of assumptions in
analytic processing. The class designations permit validation
and conforming of different data sets, thereby allowing the
data viewer 100 to combine documents from unrelated
sources into a single unified source. Class tags may be used by
macros that look at the class tag list to see if it qualifies to act
on the particular line item. For example, if a line item in a
financial statement is tagged as of the class “debt,” the macro
knows that it can use this line in calculating “debt-to-equity™
ratios. But if the line item is tagged “piano,” for instance, the
macro will not be applied. Note that, in this implementation,
the element names for the classes are entered as comma-
delimited strings.

The <li_class> element 930, in one implementation, has
five attributes. These are “class_name,” “parent_class,”
“form,” “href,” and “description.” Class_name is the name of
the class to which the line item set belongs, and parent_class
denotes the name of the parent class. These attributes may be
used by more advanced features of the data viewer 100 such
as the macros.

The <line_item_set> element 906 further contains a <link-
set> 916 similar to the previously described <linkset>. As
before, this <linkset> 916 further has a <link> element 922
previously described.

The <line_item> 928 element may have, in one implemen-
tation in accordance with the present invention, four sub-
elements and 18 attributes. The elements are <data_x> 938,
which contains the x-values for this line item if they are
different from the default x-value in the line_item_set ele-
ment <data_y> 932 which contains the y-data values, the data
numbers or values of the line item, a <linkset> 916 having a
<link> 922 as previously described, and a <note_set> ele-
ment 934. The <noteset> 934 contains one or more <note>
elements 936 which have user readable, plain language notes
regarding the line item.

The attributes of the line item include: “li_ID,” “li_legend,”
“li_title,” “li_cat,” “y_axis_title,” “level,” “format,” “rela-
tion,” “li_notes,” “li_desc,” “li_prec,” “li_unit,” “li_mag,”
“li_mod,” “li_measure,” “li_scale,” “li_adjustment,” and
“li_aggregation.” Several of those attributes have the same
meaning as attributes previously described except that they
specifically describe only the line item and y-values to which
they are attached.

The li_ID is a unique identification number for the
<line_item> element 928 and may be numbered from 0 to n

US 9,262,383 B2

27

(where n is the number of line_item elements). In one imple-
mentation consistent with the present invention, the numbers
are unique and in order.

The li_legend attribute is a plain language string describing
the line item that does not need to be unique. Generally, it
appears in the leftmost column of the views. The 1i_title is a
string defining the general subject of the line item. In the data
viewer 100, this may be used as the title of the chart and as
titles in reports. Typically, titles are the same for line items
grouped together, but they are not required to be.

The li_cat attribute represents a line item category. As
opposed to the li_legend and the li_title, which are displayed
on the chart in the data viewer 100, the 1i_cat is not normally
displayed. It is generally a non-printing designator for a cat-
egory that the line item might belong to. Often, this may be a
table name, or a primary key in a database, or some other
organizing identifier. It may be used to group line items for
reports.

The y_axis_title attribute is a string which will appear on
the y-axis as the title of that axis. However, if the user applies
a transformation to any variable in the descriptor, this hard-
coded y-axis title will be replaced by one generated by the
data viewer 100 using other attributes.

The level attribute and relationship attribute specify hier-
archical relationships between line items. Conventional links
in relational databases are maintained by matching records on
the basis of “key fields.” One drawback of this approach is
that nothing is known about the character of the relationship
except that it exists, and there is no way to tell, absent specific
documentation elsewhere, that one record is a child or parent
of the other, and whether that nature is a containment, a
derivation, and inheritance, etc. In RDML, the creator of the
data may specity the hierarchical level of each line item and
the nature of that hierarchical relationship. The data viewer
100 uses the level attribute and the relationship attribute to
create a hierarchical tree, to place icons representing the
relationship in front of each line item to summarize the deri-
vation of numbers and describe their context, and to assist
macros and updating data tables. The level attribute specifies
how many levels down from the parent node a line item is,
while the relationship attribute specifies the nature of the
relationship, such as whether the line item is a child of another
line item or contained by another. It may also determine
whether the line item is an additive or subtractive subcompo-
nent of a parent, or a subtotal that is dependent on other child
line items. These previously mentioned attributes and ele-
ments make up a DTD 702 in accordance with methods and
systems consistent with the present invention.

Li_aggregation is an attribute useful if a user wants to
“aggregate” or “deaggregate” data based on differing x-axis
transformations. This attribute explains to the data viewer 100
how to handle this particular line item when such transforma-
tions are attempted. For example, if a line item set presents
bank account information, each line item may be a time series
and presents quarterly data, but the user may wish to see the
data on an annual basis. For some line items in the set, it is
simply a matter of summing up four quarters worth of data
(e.g., deposits) in which case the attribute value would be
“sum,” but for other line items (e.g., closing balance), only the
last quarter’s value need be shown, in which case the attribute
value would be “last.”” Similarly, if a minimum annual balance
is desired for four quarters of minimum balances, only the
lowest balance for all four quarters would be needed. Such a
line item’s li_aggregation attribute value would be “mini-
mum.” Possible accepted values include: “sum,” “average,”
“minimum,” “maximum,” “first,” “last,” and ‘“none.”

10

15

20

25

30

35

40

45

50

55

60

65

28
IV.A.2. Reader, Parser and Processor

With reference back to FIG. 7A, the RDML reader 704
may be an object within the RDML data viewer 100 which
manages the process of finding an RDML document 102
(locally, on a LAN, or on a Wide Area Network such as the
Internet), passes it to the XML parser 706, relays error notices
to the user, and coordinates the updating of other components
states to reflect a rejected or damaged RDML document 102.
The user of the RDML data viewer 100 may initiate the
download ofan RDML document 102 in many different ways
including: clicking on an RDML hyperlink (these are like any
other hyperlink, except that the target document may end in
“rdm”), typing a “.rdm” URL into the “Address” box of
RDML data viewer, or requesting the loading of the docu-
ment in a macro. Also, while conventional HTML browsers
have a cache of only HTML documents represented as the
“history” of the browser, the browsers may only display one
of these documents at a time. Given an URL address, the
RDML reader 704 reads in Document Object Model
(“DOM”) compliant documents (e.g., RDML documents
102), discussed below. The XML reader 704 may be imple-
mented by a third-party set of Java classes, such as the
XMLA4IJ parser developed and licensed by IBM, but others
may also be used. The RDML reader 704 may cache multiple
documents in RAM if they are compatible with the active data
set. Not only are these documents immediately available, but
sub-elements of the documents are available immediately
because the data viewer 100 may maintain indexes of impor-
tant data and metadata in the documents. Additionally, mac-
ros may be used to find specific elements in the document that
is read in by the RDML reader 704.

The XML parser 706 takes a serial stream of text characters
from the RDML data document 102, performs basic functions
such as eliminating white space, dividing input into words
and groups of words and searching for opening and closing
characters (primarily “<” and “>"). The XML parser 706 used
in the RDML data viewer 100 may also be a third-party set of
Java classes, such as the XMIL4J parser developed and
licensed by IBM, but other parsers may also be used.

The processor 708 receives the parsed text and creates a
tree-shaped data structure of the data elements, matching the
structure of the RDML DTD 702 hierarchy. The hierarchical
structure conforms to the DOM Model, meaning that data is
available in a standard form, and that a standard library of
methods and functions are available for accessing data, edit-
ing elements, searching through nodes to find certain ele-
ments, and so forth. The XML DOM standard is controlled by
the World Wide Web Consortium, and can be found at “http://
www.w3.0org/TR/REC-DOM-Level-1/".

The RDML Processor 708 generally performs three pri-
mary functions on the incoming parsed text to create an
internal software object: error checking, structuring, and add-
ing functionality. The error checking functions of the proces-
sor 708 simply compare the output of the parser 706 against
the text expected as defined by the DTD 702. If the incoming
document does not conform, the processor 708 determines
whether the defect is: (1) not critical, in which case a warning
is sent to a log and work continues, or (2) critical, in which
case work stops and an error message is sent to the routine that
called the parser 706.

The structuring function is a matter of assembling the text
into a hierarchical data structure matching the hierarchy
described in the DTD 702. The target data structure may be a
vector of vectors, or other collection of collections. When the
data structure is created, it is “wrapped” in a software object
(an “RDMLDoc” object) that adds an interface to the data so
that other software objects can communicate with it. Most of

US 9,262,383 B2

29

the added functions (“methods™) provide access to specific
subsets of the data or particular elements or attributes.

The functions of the RDML processor 708 can be per-
formed by the same class as the RDML Reader 704, where the
RDML reader 704 has been set up on a “callback” relation-
ship with the XML Parser 706. In that way, when the parser
706 gets a new element from the RDML document 102, it
informs the RDML reader 704 that it found the element and
returns it to the reader. In such a way, the RDML reader 704
acts as a processor as well as reader (even though it may hand
off the actual element handling to another class).

IV.A 3. X-Value Transformer and Line Item Set Types

Regarding the X-value transformer 710, the term
“X-value” refers to the fact that the fields of the input data
records are plotted along the x-axis of the chart view 716 by
default. (The values of each record for each field are plotted
on theY axis.) For example, a time series will, by default, be
plotted in the chart year with the time periods plotted on the
x-axis. When more than one data document is input, their data
fields must be correlated before they can be presented
together in a common view. The X-value transformer 710
determines what adjustments have to be made, and then
accomplishes them.

Generally, the RDML data viewer 100 recognizes three
different types of line item sets (i.e., (1) “time series,” (2)
“category,” and (3) “X-Y Plot”) which account for the major-
ity of end user tables. The X-value transformer 710, by rec-
ognizing these types, can automatically provide the correct
display and transformation routines, saving the user the time
and expense of changing a broad range of details. To give an
example of this, when a times series table is encountered, the
data viewer 100 can recognize that the x-values must fit the
permissible types of dates, check them, conform them, and
format them, thus sparing the user the work. In one imple-
mentation consistent with the present invention, a line item
set type is a required attribute of the line item set element 906.

FIG. 11 shows the steps used by the X-value transformer
710 to store a new document in the primary data store
(“PDS”) 712 described below. Generally, the X-value trans-
former 710 determines whether a newly input data document
is of the same type as the one(s) currently stored in the “active
documents” list of the PDS 712. Active documents are avail-
able for display in the tree view 720, to be charted, to be added
to the spreadsheet view 724, and so forth.

First, the X-value transformer 710 receives a new docu-
ment 102 (step 1102). It then determines the type of the active
documents in the PDS 712 (step 1104). If the newly arrived
document is the same line item set type as the active docu-
ments (step 1106), it is added to them in the PDS 712 (step
1108). If it is of a different type than the currently active
documents in the PDS 712, the user is notified that it does not
match the currently active documents (step 1110). The user
may choose to reject the new document 102 (step 1112), in
which case the object is not added to the PDS 712 (step 1114).
If the user chooses to erase the currently active documents
(step 1116), the currently active documents are erased (step
1118) and the new one is loaded (step 1120). Otherwise, the
new document 102 is placed in the PDS 712 as a “standby”
document (step 1122). Standby documents are available for
providing data to scripts and macros, but do not interfere with
the active document views. Optionally, if the x-value trans-
former 710 need not perform any transformations, the RDML
reader 704 may store the document in the PDS 712.

If the newly arriving document is of the same line item set
type as the active documents, the X-value transformer 710
matches the data_x fields of the new document to the existing
documents. They may be in a different order, may be spelled

10

15

20

25

30

35

40

45

50

55

60

65

30

differently, be in a different form, or otherwise not immedi-
ately compatible. The X-value transformer 710 makes the
necessary adjustment according to the type of line item set.
For example, time series line item sets have elements which
are ordered in time. One obvious incompatibility is that peri-
ods may be different. Often, one set of data is in years and the
other in, for example, months. The X-value transformer 710
uses attributes of the line items to handle each correctly.
However, monthly data cannot just be added up to produce a
yearly value, for example, because the number might repre-
sent a non-additive value. For example, a line item might be
“Ending Bank Balance,” but adding up 12 monthly ending
balances does not produce a year-ending balance. The line
item provides a period-length attribute that specifies that it is
a “period-end” value, and the X-value transformer 710 uses
the last month only to create a yearly value. In another
example, monthly “deposits” would be added together, and
monthly “average interest rate” might be a “period-average.”
Each line item provides instructions on how it is to be handled
in conversion to other periods; this is provided by the li_ag-
gregation attribute.

Another change that might be made is in the date format.
Some data sets might simply display the year (“YYYY”),
others might use a standard date format (“YYYY-MMDD:
HHMMSS.MSS”), or some other variant. The X-value trans-
former 710 puts these all into a common form.

The data viewer 100 additionally provides tags describing
how it is to be handled in the event of a period widening/
shortening, or a period shift. Numbers may be tagged as
“sum,” “median,” “average,” “last value,” “first value” or a
specified formula. The X-value transformer 710 and the data
viewer 100 may also handle “period shifts,” a related type of
conformance. For example, a first data source may be based
on a calendar year ending on December 31 while a second
data source is based on a fiscal year ending on September 30.
The RDML data viewer 100 may use the period_length
attribute of the x_data element 924 to designate the period
length of the data, in conjunction with the li_aggregation
attribute of the y_data element. The latter attribute is used to
estimate a conforming transformation.

Y-values, the data values in a line item, may change when
the x-values have been conformed. For instance, if twelve
months of “average interest rate” is aggregated to produce
“annual average interest rate,” the updated designation of the
number that will appear in legends or axis titles changes. The
data viewer 100 recognizes that the resulting values may
possibly undergo a transformation based on unit, magnitude,
modifier, scale, measure, and adjustment attributes. These
attributes allow efficient and automatic interpretation, trans-
lation, manipulation and presenting of data in a line items.
They further facilitate the automatic changing of text descrip-
tions in charts and reports to be automatically changed by
macros.

Additionally, to conform differing time periods in separate
documents, the X-value transformer 710 and the data viewer
100 may prompt user assistance if needed. For example, a first
data source may be denominated by fields such as “Week 1,”
“Week 2,” etc., while a second data source is denominated by
“April 4, 1999,” “April 11, 1999,” and so forth. The X-value
transformer 710 recognizes this problem (and a broad set of
similar circumstances), and presents a dialog box asking the
user for the actual date that “Week 17 begins on.

The Category line item set type is a common type of line
item set that is often referred to as a “crosstab.” In this line
item set type, the x-values are categories. On a chart, for
instance, the x-axis may be divided into eight categories for
eight companies, with the y-axis showing the values of rev-

US 9,262,383 B2

31

enues or profits. Sometimes matching the fields of different
source documents by name is too dependent on wording,
spelling, or language to permit efficient matching. The chal-
lenge for categories line item sets is to handle these differ-
ences in usage. For example, company income statements
may start with a concept of “sales,” but the actual words used
may be “revenues,” “total revenues,” “gross income,” or any
other designation used in different languages, dialects, or
industry-specific terms. To handle these line item sets, the
X-value transformer 710 lines up categories from multiple
data sets by first matching up any actual matches in spelling
(ignoring cases in the default). Second, it looks at the class
elements 930 to see if there are standard vocabulary tags;
these standards may be different for different industries or
uses. When dealing with companies, for example, the ticker
symbol may be used as the matching tag. For instance, one
data set may have a category for “Ford” another for “Ford
Motor Company,” and another for “F.” All would be matched
by the common presence of a tag <“F”> (Ford’s ticker sym-
bol) in the class element 930. If this fails to provide matches,
the data viewer 100 presents the user with a dialog box with
two lists of fields. Using “drag and drop” techniques, the user
can quickly match the two sets of fields, and fields with no
match are simply appended as new fields. In addition to
creating a mapping dictionary based on text, class sets, and
user input, the data viewer 100 can use a mapping file speci-
fied by a user or an input document to combine files automati-
cally.

FIGS.12A,12B and 12C depict screenshots of an X-Y plot
1202 in accordance with the present invention. Most com-
monly found in scientific statistical series, an X-Y plot 1202
by its nature treats every x-value as distinct. This display plots
individual data points on the graph. The X-value transformer
710 is only required for collating only exact matches. The
screenshot also displays a tree view 720 that corresponds to
the data in the X-Y plot 1202 and a legend 1204. As shown on
FIG. 12A, the X-Y plot 1202 displays the selected line item
1206, and the legend 1204 changes as the line item selection
changes. The FIGS. 12B and 12C show the X-Y plots 1202
resulting from the selection of different line items 1206 in the
tree view 720.

IV.A 4. Primary Data Store

FIG. 13 depicts a primary data store 712 and some objects
which it stores. The primary data store 712 is a cache of
loaded RDML documents 102 that may be implemented in a
number of ways (e.g., as a vector, as a dictionary or hash table,
or as some other collection of objects).

Once the X-value transformer 710 has determined an
active or standby status for a newly arrived data document
102, and made any necessary modifications to the x-values, it
passes a new RDMI.Doc object 1302 to the PDS 712, which
manages its communications with the various views or plug-
in applications. This PDS 712 central storage allows the dif-
ferent views (716,720, 724, and 728) to have access to an
object 1302 representing the original source data. The indi-
vidual views (described below) make their own copies of the
portions of the data that they need, and in whatever trans-
formed form they require. The PDS object 712 generally does
not perform transformations on data; it simply holds them,
adds and removes them, and makes them available in a public
interface to other objects. Table 1 below shows an exemplary
class diagram of the PDS object 712. Note that vectors are
used to hold the RDML documents 102 in this implementa-
tion; it would also be possible to use a hash table or collection
data structure.

10

15

20

25

30

35

40

45

50

55

60

65

32
TABLE 1

PrimaryDataStorage

—Active_ RDMLDocs : Vector

—Active_ RDMI Lines : Vector

—Standby_RDMULDocs : Vector

—Standby_RDMLLines : Vector

+Add_RDMLDoc(rdmldoc : RDMLDoc) : void

+Add_RDMLLine(rdml_li : RDMLLineltem) : void

+getRDMLDoc(rdmldoc : RDMLDoc, Status : int) : RDMLDoc

+getRDMLLineltem(rdml_li : RDMLLineltem, status : int) :
RDMLLineltem

+getNumRDMILDocs() : int

+getNumRDMLLineltems() : int

+clearRDMLDoc(rdmldoc : RDMLDoc) : void

+clearRDMLLineltem(rdml_li : RDMLLineltem) : void

In the class diagram, the upper section lists the object’s
variable names followed by their types. The lower section
lists the method names with the argument name and type in
parentheses followed by the method output type. As shown,
the PDS 712 provides variables and methods for storing
active and standby RDMLDocs 1302 and RDMLLineltems
1304. The PDS 712 object includes methods to add, retrieve
and clear documents and line items, in addition to methods for
determining the number of documents and line items.

An RDMLDoc object 1302 is a full internal representation
ofthe RDML document 102. It contains as its central attribute
the tree-structured data elements contained in the document’s
original tags and implements the DOM interface. Applica-
tions that work with DOM objects may also work with
RDMILDoc objects 1302. The RDMLDoc object 1302 pro-
vides a higher level interface for the different views of the
RDML data viewer 100. The Table 2 below shows a class
diagram of an exemplary RDMLDoc object 1302 in accor-
dance with the present invention.

TABLE 2

RDMLDoc

—-txDocl : txDocument

+RDMLDoc() : RDMLDoc

+createDoc(filename : String) : TXDocument

+getAttributeValue(elementname : String, attributeName : String) : String

+getAttValue(levl_tag : String, lev2_tag : String, lev3_tag : String,
att_name : String) : String

+getData_xDefaults() : JCVector

+getLinkAttValue(element : String, index : int, attname : String) : Atring

+getLinkText(element : String, index : int) : String

+getNumLineltems() : int

+getNumLinksForElement(elementname : String) : int

+getRDMLLineltem(att_name : String, att_value : String) : RDMLLineltem

+getTXDoc() : TXDocument

+makeRDMLLineltem(li : Node) : RDMLLineltem

+parseCommaDelimString(in : String) : JCVector

+setTXDoc(txDoc_in : TXDocument) : void

+traverseDOMBranch(node : Node) : void

Described below are class methods shown in Table 2 of an
RDMILDoc object 1302 in accordance with one implementa-
tion consistent with the present invention. First, RDMLDoc(
) is a constructor for creating an internal RDMLDoc object
1302. The method “createDoc” reads in the file indicated by
an input URL, parses it, and creates a new TXDocument
which the user then usually assigns to this RDMLDoc object
1302. A TXDocument is an object which implements the
Document Object Model (DOM) interface. The TXDocu-
ment creates the DOM structure for the file and “wraps” it
with various access and administrative methods. It is the
DOM-compliant original representation of the document.
The “setTXDoc” method sets the underlying TXDocument,

US 9,262,383 B2

33

and initializes object properties such as the number of line
items, and “getTXDoc” returns the underlying TXDocument.

Whereas an RDML document 102 forms a tree of elements
having attributes with values, the “getAttributeValue”
method returns the attribute values for the named element,
and “getAttVal” returns as a string the attribute value found at
an inputted element name and attribute name. The
“getlinkAttValue” method gets the attribute value of a hyper-
link element, according to the element name and attribute
specified and “getLinkText” gets the corresponding hyper-
link text.

When called, “getNumlLineltems” returns the number of
line items in the RDMLDoc 1302 and similarly “getNum-
LinksForElement” returns the number of links for an element.

The “getRDML Lineltem” method supplies the first RDM-
LLineltem 1304 (described below) based on the value of a
particular attribute. For example, specifying “li-ID” and “3”
will return the RDML Line item in which the “li-ID” attribute
equals “3.” The method called “makeRDMILLineltem” takes
the indicated node, assigns it to a new RDMLLineltem object
1304 and initializes the object.

The method “getData_Defaults” returns a vector of the
default x-values. Furthermore, “parseCommaDelimString”
takes a comma-delimited string as input and returns the val-
ues between commas as elements of a vector and returns a
vector of the strings. Finally, “traverseDOMBranch” takes an
input node as a parameter and then traverses from that node
downwards, and at each node, an operation, such as finding an
element with a particular name, may occur.

Similar to the RDMLDoc object 1302, the “RDMLLi-
neltem” 1304 is an object that provides high-level methods
for retrieving data on a line item, any associated links or notes,
and the attributes. The views of the RDML data viewer 100
work with RDMLDocs 1302 and RDMLLineltems 1304 to
create their presentations. Table 3 shows a class diagram for
an exemplary RDMLLineltem object 1304.

TABLE 3

RDML Lineltem

—data_x : TXElement

—data_y : TXElement

—jevdata_x : JCVector

—jevdata_y : JCVector

-1i : TXElement

-line_item_set_att : NamedNodeMap
+RDMLLineltem() : void

+get_jevData X() : JCVector

+get_jevData Y() : JCVector

+get_strX_Value(index : int) : String
+get_strY_Value(index : int) : String
+getAttributeValue(attributeName : String) : String
+getLinkAttribute(index : int, attName : String) : String
+getLinkText(index : int) : String

+getNumDataPoints() : int

+getNumLinks() : int

+initLineItem(doc : RDMLDoc, lineitem : Node) : void
+set_li(input: TXElement) : void

Described below are class methods shown on Table 3 of an
RDMIL Lineltem 1304 in accordance with one implementa-
tion consistent with the present invention. Methods with the
same name as described above in connection with the RDML-
Doc object 1302 have the same general function although,
since a line item is already specific to an element, the methods
take different arguments because they typically do not need
an element specified in the given arguments.

RDML Lineltem() is a constructor that creates an RDML
Lineltem object, and “initLineltem” initializes the line item

10

15

20

25

30

35

40

45

50

55

60

65

34
to the values found in the RDMLDocument. The method
“get_jevData_X” d “get_jcvData_Y” return the x- and
y-value vector for the indicated number of the line item. The
“get_strX_Value” method and “get_strY_Value” return the x-
and y-value at the number of the line item in the x_values
vector as a string.

The “getNumDataPoints” method is called to receive the
number of data points, i.e., the number of x-values, in a line
item. The method “set_li”” allows the calling routine to set the
line item in the RDML document 102 that this particular
RDMI Lineltem is to represent.

Referring back to FIG. 7A, in one implementation consis-
tent with the present invention, the chart manager object 714
takes up to six RDMLLineltems 1304 from the PDS 712 and
displays them on a chart displayed on the graphical user
interface 734 and is typically used in conjunction with the tree
view 720 and the macro panel 732. When a user clicks a
mouse on a line item in the tree view 720, that line item is
added to the chart. When the user clicks the mouse on a macro
line in the macro panel 732, the selected line items that are
charted are transformed according to the programming of the
macro. The chart manager 714 may be separated from the
graphical chart view 716 to allow the ability to change chart
software components easily should different or better graphic
chart components become desirable.

Views

The data viewer 100 presents the user with a number of
different views (716, 720, 724, and 728 as shown on FIG. 7A)
which the user may use to view the information in RDML
documents 102 stored in the PDS 712. These views include a
chart view 716, which shows graphical charts and graphs of
the data, and a tree view 720 showing hierarchical represen-
tations of line items. Additionally, the data viewer 100 pre-
sents a spreadsheet view 724 which shows a data sheet similar
to a spreadsheet, and a footnote view 728 which shows the
text of footnotes associated with RDML documents 100. The
views are discussed in detail below.

IV.A.5. Chart View

Upon receiving RDML markup documents, the chart view
transforms, formats, manipulates and displays data stored in
the markup documents using the attributes describing the
meaning of the data. The chart view uses the attributes of the
numbers to, for example, facilitate the simultaneous display
of different series of numbers of different types on a single
chart and automatically display appropriate descriptive tex-
tual components.

As an example, the chart view automatically determines
when a first series is in the “U.S. dollars” and the second
series is in “French francs™; it may automatically place them
on separate axes or automatically translate the units. It can
also determine the titles for these axes and set the labels onthe
axes. The chart constructs itself automatically using the
attributes of the individual elements of the markup document,
and these actions may be initiated with a single mouse click.

FIGS. 14A-F depict the chart view 716 inthe top half of the
screen, and the tree view 720 in the lower half. The chart view
716 has two primary components: the chart itself and the chart
legend 1402. The line item 1206 that has been selected in the
tree view 720 is automatically graphed in the chart 716. The
chart manager 714 generally has three primary responsibili-
ties: (1) collecting messages from the tree view 720, macro
panel 732 and main menu (not shown) regarding changes to
make to the chart 716, (2) obtaining the correct line items or
macros from the PDS 712 or the macro manager 732, and
coordinating transformations to the data, and (3) managing
the chart’s data object (the “chart data” object 715), which

US 9,262,383 B2

35

contains the data in the form in which it will be used in the
chart, and the attributes of those line items.

Generally, the chart manager 714 handles updates and
manipulations to the chart itself (e.g., axes, labels, etc.) while
the chart data object 715 handles the plotting of the data on the
chart 716. The chart manager object 714 provides the infor-
mation the chart data object 715 needs to update its internal
data structures. Chart data 715 is a data model that is used by
the central graphical chart 716 to paint itself, but other com-
ponents also use the data: the footnotes, the chart legends and
titles, and any macros that are operating on the data.

One way to visualize the role of the chart manager 714 (and
its data partner, the chart data object 715) is to view the steps
of a method of a complete sample scenario: the user has
selected a line item 1206 in the tree view 720 and the chart
manager 714 is notified that this line item is to be added to the
chart 716. There are various ways to set up the chart data/chart
manager architecture. One way described in detail below is to
create the chart up front and then feed it changes in data
(initialization, clearing, updating data series, etc.) A second
general approach is to use the data to create a new chart upon
every request for a change.

FIGS. 14A-F will now be described in greater detail, and in
particular, FIGS. 14A and 14B will be described in connec-
tion with FIGS. 15A, 15B, and 15C, which illustrate steps of
a method for updating a chart view 716 upon the selection of
aline item 1206 in the tree view 720 in an exemplary scenario
in accordance with the present invention. FIG. 15A illustrates
steps mainly involving the tree view 720 and graphical inter-
face 734, while FIGS. 15B and 15C illustrate steps mainly
involving the chart data object 715 and chart manager 714
respectively.

Asillustrated in FIG. 15A, auser selects a line item 1206 in
the tree view 720 on the graphical interface 734 (step 1502).
The tree view 720 obtains the ID of the selected line item 1206
(step 1504) and removes any old macros that are applied (step
1506). The chart manager 714 then deletes the last series
(displayed data of a line item) from the chart view 716 to
make way for the newly selected line item (step 1508).

Referring now to FIG. 15B, the chart data object 715
removes existing data from the chart 716 (step 1512). It then
obtains the RDMLDoc object 1302 from the PDS 712 (step
1514) and the RDML Lineltem object 1304 from the RDMIL-
Doc object (step 1516). After doing this, the chart data object
715 normalizes the x-value data (step 1518). For example, if
one charted series displays data from 1961 to 1998, and the
new one displays data from 1973 to 2005, the chart data object
715 ensures that the chart displays data from 1961 to 2005.
The chart data object 715 then fills the x-axis 1404 with data
(step 1520) and fills the y-axis 1406 with data (step 1522).

As shown in FIG. 14B, a chart may have more than one
y-axis 1406 charted at a time, (i.e., a different y-axis on either
side of the chart) to display multiple line items simulta-
neously. Thus, the chart data object 715 further marks which
y-axis the series is on (step 1524), and if it is on a Y2 axis 1408
(asecondy axis) (step 1526), it adds that axis (step 1528). The
chart data object 715 sets the number formats for the axis
labels 1406 and 1408 (step 1530) and sets the number preci-
sion (step 1532). Finally, it updates the footnotes (step 1534)
and runs any macros that are applied (step 1536).

Referring now to FIG. 15C, the chart manager 714 then sets
the Y1 title (step 1538) and the Y2 title (step 1540) using line
item attributes. After that, it updates the series styles (step
1542), the chart title 1410 (step 1544), the legend 1402 (step
1546), and the x-axis 1404 (step 1548). After these updates,
and the chart manager 714 updates the number precision (step
1550), the y-axis 1406 (step 1552) and the chart types (i.e.,

10

15

20

25

30

35

40

45

50

55

60

65

36

area, bar, stacked bar, line, pies, points, etc.) (step 1554).
Subsequently, it updates the footer 1412 (step 1556) and sets
the maximum x-value to the extent of the last used value,
disposing of blanks on the right side of the chart 716 (step
1558). Finally, the graphical interface 734 repaints the
graphical chart 716 with the newly created updates (step
1560).

The chart manager 714 and chart view 716 can chart dif-
ferent series types on a single chart and handle transforma-
tions automatically. Because two (or more) data series may be
placed on the chart 716 from different source documents 102,
they are synchronized for purposes of placing them on the
common graph. The chart manager 714 uses data_x elements
or the metadata tags to automatically transform data to permit
different series types to appear together on a chart. It recog-
nizes, for example, when a first series is in “US Dollars” and
a second series is in “French Francs”; it makes arrangements
automatically to place them on separate axes. There is no need
for the user to go through a charting “wizard” or to find,
understand, and translate the various units, titles, and adjust-
ments. One click on each of the series’ lines in the tree view
720 (potentially with a modifier key (e.g., the CTRL key)
depressed) instructs the chart view 716 to construct itself
given the metadata of the individual elements. The chart
manager 714 and chart data object 715 consider and take into
account the following in updating the chart: the unit type,
magnitude, scale, modifier, measure, y-axis title, chart title,
chart footnote, precision, number format, chart type (line, bar,
etc.), legend and colors of the various components.

The data viewer 100 also permits the adding of a series to
a chart using a single click or command. Adding a series to a
chart increases the number of series displayed on the chart. In
conventional spreadsheets, charting programs, and data
graphical interfaces, this task requires the user to either
rebuild the whole chart through the wizard, fill in a dialog box
with information on the new series, or add the numbers by
custom programming. When the data viewer 100 adds the
new series to the chart with a single mouse click. The existing
data is maintained as it was, and any necessary changes to the
chart’s type, format, scale, etc. is made automatically by the
chart manager 714 and chart view 716 to accommodate the
new series.

Just as a series can be added with one mouse click (or one
command from the menu), so can it be removed. There is no
need for the user to worry about accidentally deleting some-
thing, as no actual information is lost from the data viewer
100. It can always be added back to the chart 716 with a
simple mouse click.

The chart view 716 also supplies an expandable legend
1402 as shown on FIG. 14A. A significant problem for most
users of spreadsheet programs has been the inability of the
user to control the size, format, and handling of the legend
1402. The result is that charts usually end up with legends
such as “MSFT” and “SUNW,” rather than longer descrip-
tions with multiple colors and fonts, word-wrapping and
other readability enhancements. The chart view 716 chart
provides legends that (1) can grow to unlimited sizes, (2)
support word-wrapping, (3) can contain multiple fonts, (4)
can contain multiple font types (bold, italics, normal), and (5)
can contain varying colors for emphasis. If the legend infor-
mation (typically stored in the 1i_legend attribute) for a line
item is too long for the legend box on the chart, the informa-
tion may word-wrap and scroll to accommodate the addi-
tional information.

The chart view 716 permits further convenience by auto-
matically specifying the y-axis title 1414. Current spread-
sheet and charting programs require the user to provide a

US 9,262,383 B2

37

y-axis title, usually through a chart wizard or by specifying a
location to look up atitle. The RDML shifts this burden to the
data originator, who is in a better position to accurately
specify the description of the y-axis values. The y-axis title
1414 specified by the data originator is placed in an attribute
field (y_axis_title) of the line item element tag and is used by
the chart view 716 as the default y-axis title 1414 when the
line item is added to the chart view 716.

Often, however, the user wants to make a change to the
numbers and display the transformed series on the chart 716.
In this case, the default y-axis title 1414 may no longer be
correct. Rather than require the user to manually figure out
what the new value description is (a process that could take
several minutes or longer with current analytic programs), the
chart manager 714 and chart view 716 data automatically
generates a new y-axis title 1414 upon transformation of
values using the information provided in the modified unit,
magnitude, modifier, scale, measurement, and adjustment
attributes of the line item 1206.

For example, suppose a first series is charted as “$ in
Millions,” and the user applies a macro that divides every
number in the series by 1,000. The chart manager 714 auto-
matically creates a new y-axis title 1414 of “$ in Billions.”
Number transformations can lead to quite complicated trans-
formations of the y-axis title 1414. A user may multiply a first
series (“Gallons in Millions”) by a second series (“US $ per
Gallon”); the result will be a series of numbers, a third series
(“US $ in Millions™). If there are ambiguities, the data viewer
100 presents the user with a dialog box displaying all the
known information regarding the quantities involved and
requests that the user supply a title.

Similarly, the chart manager 714 and chart view 716 can
automatically generate the x-axis title and chart titles 1410
using the metadata attributes. In addition to generating y-axis
and x-axis titles, the data viewer 100 automatically performs
the task of creating a new chart title 1410 when the charted
series are changed or when multiple series are added to the
same chart. For example, a first series has a default chart title
of “Total Sales,” a second series has a default chart title of
“Total Expenses,” and a third series has a default chart title of
“Total Sales.” The data viewer 100 will create a combined
chart title of “Total Sales; Total Expenditures™ by combining
the dissimilar elements, and eliminating the duplicate ele-
ments.

Three examples illustrate other types of automatic title
manipulation. In the first example, suppose a chart has two
series placed on it: Series A has a title of “GDP” and a legend
of “China”, and Series B has a title of “GDP” and a legend of
“Malaysia”. If both are put on the chart, the titles will dupli-
cate each other. In one implementation consistent with the
present invention, duplicate titles are removed such that the
title for this chart will be simply “GDP”. Because the series
legends are different, the legend on the side of the chart will
have two entries: “China” and “Malaysia”.

As a second example, suppose the legends are duplicative:
Series A has a title of “China” and a legend of “GDP”, and
Series B has a title of “Malaysia” and a legend of “GDP”.
Because both legend entries would be “GDP”, there may be
confusion about which legend applies to which line on the
chart. In this case, the data viewer 100 transposes the legend
and chart title entries such that the result is the same as in the
first example above; the title of the chart is “GDP” (the dupli-
cate is removed) and the legend entries are “China” and
“Malaysia”.

10

15

20

25

35

40

45

50

55

60

65

38

Finally, in a third example, suppose the series have differ-
ent titles and different legends. Series A has a title of “GDP”
and a legend of “China”, and Series B has a title of “National
Savings” and a legend of “Malaysia”. The legends are left as
is, and a new chart title is created by appending one to the
other separated by a “;”. The chart title on the display thus
becomes “GDP; National Savings”, and the first legend
becomes “GDP—China” and the second legend becomes
“National Savings—Malaysia”. All three of these changes are
string manipulations (selecting and/or appending).

The chart manager 714 and chart view 716 can also auto-
matically trim beginning and ending x-values 1404, thus
relieving the user of the need to trim null leading and trailing
values from charts. In conventional spreadsheet and charting
programs, chart pointers must be recreated or manually
adjusted when the underlying data is enlarged or shortened.
For example, if a series is charted that runs from 1990 to 1998
and it is replaced by data from 1990 to 1996, there would be
two blank spaces at the right side of the chart. The data viewer
100 and chart manager 714 avoid this and similar problems by
handling missing or null values at the front or back of line
items as indications that the chart should be automatically
restructured.

The chart manager 714 also automatically formats the x-
and y-axis labels 1404 and 1406. RDML shifts the burden of
formatting the numbers on the x-axis 1404 and y-axis 1406
from the user (of which there may be thousands or millions,
each reformatting the numbers manually one or more times)
to the data originator (of which there is one, who only has to
do it once.) The format templates are regular expression
strings found in current spreadsheets and programming lan-
guages. The data viewer 100 uses the formatting strings for
the axis labels on the chart view 716, for the numbers in the
tree view 720, and as defaults for the numbers in reports. The
formatting templates are automatically changed if a macro
moves the numbers outside of the precision range that is
legible on the chart 716, or out of a format that makes sense in
the tree view 720 or in a report.

As stated previously, one of the RDML line item element
attributes is the precision of the number, the number of sig-
nificant digits to be displayed in a chart. Unlike conventional
products, which leave this entirely up to the user to figure out,
the data viewer 100 uses the specified precision to set the
scale of the y-axis 1406, and the format and precision of its
labels and tick marks.

Additionally, the chart manager 714 automatically creates
and removes a second y-axis 1408 as shown on FIG. 14B. A
chart with two dissimilar series plotted on it will require two
axes. The y-values may not be of the same units, measures or
scales. A user might, for example, have plotted a series
denominated “$ in Millions™ and then want to add to the same
chart 716 a series denominated “% of GDP,” and these two
series cannot share a common y-axis. Chart manager 714
recognizes this incompatibility, creates a new y-axis 1408,
and directs all subsequent formatting, macros, etc., to the
proper axis. Current spreadsheets and charting programs
require that the user restructure the chart with a charting
wizard (entailing many directives to be entered, and much
trial and error to get the various scales, colors, etc., correct), or
by custom programming. The data viewer 100 automates this
process, creating and formatting a new axis if required by the
specifics of the unit and scale attributes of the line items. If the
series i1s removed from the chart, the associated axis is
removed and the various scales, colors, etc., of the remaining
series are updated to make the chart readable immediately.

US 9,262,383 B2

39

Table 4 shows a class diagram of the chart manager 714.

TABLE 4

ChartManager

—chartl : JCChartComponent

—chart_data : ChartData

—chart_legend : ChartLegend

—chart_title : JCTitle

-CDV1 : ChartDataView

-CDV2 : ChartDataView

-DS : DataStore

-LineColors : JCVector

-mainFrame : MainFrame

—series1 : ChartDataViewSeries

—series2 : ChartDataViewSeries

—x_value_labels : JCVector

-xaxis : JCAxis

—xtitle : JCTitle

—ylaxis : JCAxis

—yltitle : JCTitle

—y2axis : JCAxis

—y2title : JCTitle

—yLabelGeneratorl : YLabelGenerator

—yLabelGenerator2 : YLabelGenerator

+addSeries(key : String) : void

+addY2Axis() : void

+ChartManager(mainFrame : MainFrame, chart_comp :
JCChartComponent, legend : ChartLegend) :

void

+checkYAxisTitle(series : int, y1title : JCAxisTitle,
y2title : JCAxisTitle) : int

+deleteLastSeries() : void

+deleteSeriesAfterFirst() : void

+getAddSeriesFlag() : boolean

+getChartData() : ChartData

+getYAxisTitle(series : int) : String

+initChart() : void

+markWhichYAxis(num_series : int) : void

+replotChart() : void

+replotSeries() : void

+resetChart() : void

+setAddSeriesFlag(flag : boolean) : void

+setChartType(type : int) : void

+setDataStore(ds : DataStore) : void

+setStartPeriod(sp : String) : void

+updateChartTitle() : void

+updateChartTypes() : void

+updateFooter(num_series : int) : void

+updateFootnotes() : void

+updateLegend() : void

+updatePrecision() : void

+updateSeriesStyles(num_series_local : int) : void

+updateX Axis() : void

+update YAxis(num_series_local : int) : void

Class methods of a chart manager object in accordance
with one implementation consistent with the present inven-
tion are described below. ChartManager() is a constructor for
the chart manager object 714, and “initChart” initializes the
chart to be empty, and “getChartData” gets the chart data
object 715.

The method “addSeries” adds a series to the chart while
“deletelastSeries” removes the last added series. Similarly,
“deleteSeries AfterFirst” deletes all series beyond the first
series.

A series flag is set to “true” if the next series is to be added
in addition to the already charted series. A “false” flag tells the
chart to erase the last current series and replace it with the new
series. The methods “getAddSeriesFlag” and “setAddSeries-
Flag” retrieve and set this flag.

The method “getYAxisTitle” returns the y-axis title, and
“checkYaxisTitle” checks the current y-axis title to see if the
newly plotted series is to be on the current axis, or if a new
axis is to be created. “AddY2Axis” adds a second y-axis to the

10

15

20

25

30

35

40

45

55

60

65

40
chart if needed. The method “markWhichYAxis” tells the
ChartData object which axis the new line item has been
plotted on.

The method “resetChart” resets the chart to the state it was
in when the data viewer 100 started while “replotChart”
updates the physical aspects of the chart. Similarly, “replot-
Series” replots a series due to changes.

The “setChartType” method tells the chart manager what
chart type to display upon calling replotChart, and “setDataS-
tore” tells the chart manager what data store object 712 it will
be dealing with. If the data is a time series, “setStartPeriod”
sets the internal variable for the starting period of the chart.
Finally, the update methods each update the corresponding
aspect of the chart in response to potential manipulations or
changes, e.g., “updatePrecision” updates the precision of the
chart.

Table 5 shows a class diagram of the chart data object 715.

TABLE 5

ChartData

—chtData : JCVector

—chtHeader : JCVector

—cm : ChartManager

—originalPlottedYear : String

—start_period : String

—zeroData : String[][]

+addSeriesToChart(ds : DStore, key : String) : void

+decrementNumSeries() : void

+deleteLastSeries() : void

+deleteSeries AfterFirst() : void

+illXAxis_CT(rdml_li : RDMLLineltem) : void

+HillX Axis_TS(rdml_li : RDMLLineltem, yearsDiff :
int, sizeDiff : int) : void

+illYAxis_CT() : void

+illYAxis_TS(rdml_li : RDMLLineltem, start : int,
yearsDiff : int, sizeDiff : int) : void

+getAddSeriesFlag() : boolean

+getChtData() : JCVector

+getChtHeader() : JCVector

+getChtHeaderElement(series : int, element : String) : String

+getDatalnterpretation() : int

+getDataltem(row : int, column : int) : Object

+getDifferencesInX(rdml_li : RDMLLineltem,
yearsDiff : int[], sizeDiff : int[]) : void

+getName(series : int) : String

+getNumRows() : int

+getNumSeries() : int

+getPointLabels() : String]]

+getRow(row : int) : Vector

+getSeriesLabel(series : int) : String

+getSeriesName(series : int) : String

+getStartPeriod() : String

+incrementNumSeries() : void

+normalizeValues(rdml_li : RDMLLineltem, xory :
int, yearsDIff : int, sizeDiff : int) : JCVector

+setAddSeriesFlag(input : boolean) : void

+setChtData(jevin : JCVector) : void

+setChtHeader(jevin : JCVector) : void

+setChtHeaderElement(series : int, element :
String, value : String) : void

+setDataltem(row : int, column : int, ¢ : Object) : boolean

+setNumSeries(new_num : int) : void

+setOriginalPlottedPeriod(in : String) : void

+setStartPeriod(in : String) : void

+zeroChtData() : void

Below are class methods shown in Table 5 of a chart data
object in accordance with one implementation consistent
with the present invention. Methods having names that are the
same as methods in the chart manager are not described
because they perform the same function on the data alone.

The chart data object uses the methods “fillX Axis_CT,”
“fillXAxis_TS,” “fillYAxis_CT,” and “fillYAxis_TS” to fill
the x- and y-axes of time series and chart data sets. The

US 9,262,383 B2

41

methods “decrementNumSeries” and “incrementNum-
Series” change a counter storing the number of series on the
chart.

The method “getChtData” returns a vector of chtData,
which is a vector of vectors: each element of the outer vector
is a vector of data for one line item. The “getChtHeader”
method returns a vector of chtHeader, which contains a vector
of header information for each line item. This vector is a list
of the values of the attributes of a line item, e.g., magnitude,
title, etc., and “getChtHeaderElement” gets the value of a
particular element from chtHeader for the indicated series.

Operating on data sets, “getName” returns the data set
name, and “getNumRows” returns the number of rows in the
data set. The method “getRow” returns one row of a series
while “getSeriesLabel” returns the label. The “getDifferenc-
esInX” method aligns the time periods for time series charts,
and “getNumSeries” returns the number of series in the num_
series variable. Many of the get methods have corresponding
set methods that set the value instead of receiving it.

The chtData variable is a vector of vectors (each sub-vector
is the data for one series), and “getDataltem” returns the data
value in a particular row and column of chtData. Used by the
constructor, “zeroChtData” posts an empty chart. The “get-
PointLabels” method returns an array of strings, each of
which is a point label of chtData

For atime series, “getStartPeriod” retrieves the start period
of the time series, and “normalizeValues” normalizes values
upon the addition of a series to the chart. The method “get-
Datalnterpretation” returns either “array” or “general” to
describe what form the data source structure is in. (A returned
value of “array” is for Times Series and Category data—
which share x values—, and a returned value of “general” is
for XY data, in which X values are generally independent.)
IV.A.6. Tree View

Referring back to FIG. 14A, this screen shot further con-
tains the tree view 720 on the lower halfofthe screen. The tree
view 720 presents a hierarchical view of the data. The tree
view 720 serves a different purpose than “datasheet view” of
conventional spreadsheets and database management sys-
tems. It shows the numbers in their context visually. The user
can see the dependency relationships, identify from icons and
visual clues how the different line items are related to their
parents, peers, and children. The “Units” column 1416 promi-
nently displays the units, scales, magnitudes, etc., of each line
item, an important display in mixed data sets, where the unit
context changes from line item to line item.

Each line item in the various active RDML documents 102
is displayed in the original order. In the tree view 720, each
RDML document 102 begins a new top level node. The infor-
mation displayed in the tree view 720 is a summary of impor-
tant data from and about the line item, not a display of all the
data points as would be found in a typical spreadsheet view.
Instead of presenting a potentially confusing matrix of raw
data digits that make the discerning of patterns difficult, the
tree view 720 shows, in one implementation, the following
information for each line item: legend 1402, units 1416, three
user-selectable representative data points 1418, and one or
more summary columns 1420. In the example on FIG. 14A,
there is some important documentation 1416 (description,
units), some representative data 1418 (in this case, three years
worth), and a summary data column 1420 (in this case, the
sum of all the data points). The first column 1416 displays the
legend of the line item. This is the plain language description;
it is repeated in each view where identification of the line item
must be made by a human.

The representative data columns 1418 in the tree view 720
give the user visual clues as the relative importance, the types,

25

40

45

65

42

and the format of the line items. The RDML data viewer 100
permits the user to select different fields to be displayed. For
example, one user might want to see “1940, 1970, 2000 to
get a sense of the long term trends, while another might only
wish to see “1998, 1999, 2000” to see the recent trends.

The summary column 1420 allows the user to choose a
statistic that is either desired to understand the lines and their
context better, or that is desired for purposes of sorting the
columns from greatest to least or vice versa. Any of the
columns can be sorted simply by clicking on them.

The summary column provides much easier statistics for
the user than database or spreadsheet formulas because the
RDML data viewer 100 provides one-click selection of sta-
tistical methods, thus removing the need to write formulas,
adjust for missing values, handle nulls in the denominators,
etc. Some examples of summary statistics include: (1) sum,
(2) average (3), median, (4) minimum, (5) maximum, (6)
moving average, (7) variance/standard deviation, (8) % dif-
ference (selected periods or categories), (9) % of parent, (10)
% of specified line item, (11) correlation with parent, and (12)
custom formulas. For each of these statistical measures, the
RDML data viewer 100 provides a dialog box in which the
user can adjust the assumptions. For example, the “moving
average” can be for one period, five periods, ten periods, and
so forth.

The tree view 720 emphasizes that line items are the pri-
mary data unit in the RDML data viewer 100, as opposed to
single numbers as are found in spreadsheets as cells. Since
each line item 1206 is an object, the RDML data viewer 100
may be thought of as an object-oriented spreadsheet. The
icons 1422 for each line item identifies that line item’s con-
text. For example, a “+” icon 1422 indicates that adding that
line item to its peers will produce the parent line item. This
feature addresses a shortcoming of spreadsheets and database
datasheet views: the inability to view formulas and data at the
same time. It shows the user how the numbers are related to
one another.

Conventional database management systems, spreadsheet
and numerical analysis tools have no built-in indication of
how one record is related to another. In relational databases,
the position or row may have no relevance to its data. RDML
and the tree view 720 changes this by making the position of
aline item in a set a usable piece of information by a user, and
icons 1422 may visually designate the relationship of a line
item to its parent node.

In one implementation consistent with the present inven-
tion, the following values are used for relationship icons: (1)
plus, (2) minus, (3) times, (4) divide, (5) equals, (6) computed
at, (7) member, (8) collection, (9) child, (10) parent, (11)
memo, (12) general, (13) note, (14) none, and (15) root.

Sub-line items may add up to the parent line item (or may
be modified by other relationships of their sibling line items.)
“Plus” may add to siblings while “minus™ subtracts from
them. For example, a line item called “Net Sales” may have
two children: “Total Revenues” and “Cost of Goods Sold.” If
“Total Revenues” has an 1i_relationship attribute of “PLUS”,
and “Cost of Goods Sold” has one of “MINUS”, then the
treeview 720 can show that Net Sales is equal to Total Rev-
enues minus Cost of Goods Sold. “TIMES” and “DIVIDE”
show multiplication and division of line items respectively.

“EQUALS?” is the same as “plus,” but shows the result of
calculations of line items above it in order. “COMPUTED
AT” is used for assumptions, such as percentages, interest
rates, etc., while “MEMBER” denotes that the line item is
simply a member of a collection of line items denoted by the
parent line item. In this case, no assumption is made regarding
arithmetic relationship, if any.

US 9,262,383 B2

43

“COLLECTION” denotes that the line item has child
members one level directly below it and denotes the concepts
of sets or collections. “CHILD” illustrates that the line item is
simply a “child” of the “parent” line item. It implies a sort of
descent, derivation, or inheritance. No assumption is made
regarding arithmetic relationship, if any.

“MEMO?” is a line item that might be of interest to those
looking at the sibling line items, but which is not necessarily
related to the siblings, while “GENERAL” is a generic des-
ignator. “NOTE” is usually used for line items with text
values, and “NONE” denotes that no relationship is implied.
“ROOT” states that the line item is the root line item.

The tree view 720 also provides other capabilities. It allows
the user to chart multiple line items 1206 by holding down the
“shift” key. Although number browsing can be done in the
data viewer 100 with a mouse, it is also possible for users to
graph line items using arrow keys. When the focus is on the
tree view 720, navigating up and down with the arrow keys
automatically chart the selected line item 1206. If the “shift”
key is held down, the succeeding data series will be added to
the chart, rather than just replacing the previously selected
series.

FIG. 14C shows that, in one implementation consistent
with the present invention, when a user right-clicks on a
selected series, a pop-up menu 1424 is displayed showing the
different types of documentation available. As shown in FIG.
14D, selecting “description” shows a window 1426 contain-
ing information about the particular series, with the informa-
tion being transferred from the tag form to a plain language,
user-friendly format.

FIG. 14E shows that, in one implementation consistent
with the present invention, the user may graph multiple line
items simply by selecting different “checkboxes™ 1450 in line
items in the tree view 720. In this implementation, the col-
lection of selected line items is passed to the chart data object,
which is then charted by the chart manager 714.

In one embodiment of the present invention, the selection
of'a contiguous set of lines that is less than all the lines in the
tree view 720 is facilitated through a series of mouse events.
First, a mouse down event is performed over a line (e.g.,
Bristol Center). The mouse is then dragged down (highlight-
ing lines in the process) to the last line to be included in the
group (e.g., Hamlet West Center). By delaying the mouse up
event while retaining the cursor over the last line to be
included, the user is able to signal the system (and the system
is able to detect) that all elements in the selected/highlighted
group are to be added. Accordingly, the system checks their
corresponding check boxes.

The tree view 720 further provides an easy way of creating
an RDML document 102 through drag-and-drop techniques.
In conventional spreadsheet and DBMS applications, it is
possible to create new tables from existing ones by selecting
the data rows and cutting and pasting them, or by writing a
SQL query. In the tree view 720, creating a new RDML
document 102 complete with necessary documentation can
be performed by dragging and dropping the desired line items
to an icon that represents the new document. Macros may also
be created and manipulated in the same manner.

The data viewer 100 may also set macros to be executed
automatically as the selected line items are changed. Known
as “locking” of macros, this permits browsing through data in
a transformed state.

FIG. 14F shows that a line item may have a visual link
associated with it that can be activated by a user. Upon acti-
vation of the link 1430, a list of associated hyperlinks 1432 is
displayed for selection by the user. The link 1430 itself may

25

30

35

40

45

50

44

indicate the number of associated hyperlinks 1432. The user
may then select any of the hyperlinks to access the corre-
sponding web site.

IV.A.7. Spreadsheet View

FIG. 16 depicts a screen shot that shows the spreadsheet
view 724 in the lower half and the chart view 716 in the top
half. The ultimate goal of many users is to get a set of numbers
arranged into a format that will fit into an existing spreadsheet
of'theirs. While many programs offer cut and paste transfer of
numbers from a source application to a target spreadsheet,
such an approach still leaves the user with the task of manipu-
lating, normalizing, aligning and transforming the data. A
cut-and-paste operation is therefore usually followed by the
manual recalculation and retyping of every number. The
RDML data viewer 100, by contrast, allows the user to make
the necessary data transforms with mouse-driven operations
before loading the numbers into a spreadsheet.

Referring to FIG. 16, as line items 1206 are added to and
subtracted from the chart view 716 or tree view 724, they are
added to and subtracted from the spreadsheet 724. In addi-
tion, any changes to the lines plotted on the chart view 716 (as
the result of applying a macro or combination of macros) are
immediately reflected in the numbers in the spreadsheet 724.
This provides one-click addition of information to the spread-
sheet view 724. Therefore, the way to copy data into the
spreadsheet is simply to add them to the chart 716. It is also
possible to copy an entire data document 102 or collection of
data documents from the tree view 720 to the spreadsheet
view 724, making any desired macro changes in the process.

Furthermore, RDML documents 102 may be created
directly from the spreadsheet view 724. Whereas a data table
is shown in the spreadsheet 724 (either created from another
RDML document 102 or typed in from scratch), an RDML
document may be created from that data in from the default
specified by the user. This performs a task similar to an XML
editor, but does so in a table format for the data, which is a
more natural way to enter tabular data, not in the tree structure
of current XML editors.

The spreadsheet view 724 may also directly read Internet
data using a URL 1602. It will except formulas that use
Xpointers (used by Xlink to specify destination of a link) to
read in data from remote RDML documents 102. In this
manner, data may be incorporated into a single spreadsheet
from a number of sources with no need to prepare query or
provide custom programming code.

As shown in the class diagram below in Table 6, the spread-
sheet manager 722 may be a simple object; the chart manager/
chart data 714 and 716 combination may be the actual reposi-
tories of the data. The chart manager 714 feeds data to the
spreadsheet manager 722, which places the data in the correct
cells. The spreadsheet manager 722 communicates directly
with a graphical spreadsheet object 724, which in the case of
the RDML data viewer 100 may be a third-party component.

TABLE 6

SpreadSheetManager

—gridControl : GridDataSheet
—chartmanager : ChartManager
+fillFromChart() : void

IV.A 8. Footnote View

FIG. 17 is a screenshot which shows the footnote view 728
in the lower half. Generally, footnotes are a type of extended
documentation that often get lost in transmitting and display-
ing numbers. Each line item has, as an attribute, a text string

US 9,262,383 B2

45

providing short footnotes which may be accessed by a mouse
click (that is, by clicking the “Footnotes” tab 1702 at the
bottom of the data viewer 100). As with the spreadsheet view
724, the default value is for only the plotted series to have
their footnotes displayed. However, it is possible to display all
of the footnotes of an RDML document 102 in the spread-
sheet or style sheet report views.

The footnotes in the footnotes view 728 are intended to be
simple, important reminders about the data. Typically these
include usual periods (a fiscal year), adjustments, special
problems and so forth. By default, the footnotes view 728 also
shows the source of the RDML. document 102 and the original
underlying data. In one implementation consistent with the
present invention, anything requiring more than 255 bytes is
represented in an HTML page for which there is a hyperlink
in the line item. These longer footnotes may be displayed in
the HTML window as HTML documents.

Furthermore, as the user adds and subtracts series from a
chart, the footnotes are automatically updated from the source
data, even if there are multiple source documents. The foot-
notes in the RDML “Footnotes™ tab also automatically update
their numbers and labels to match the chart. This is in contrast
to current spreadsheet and charting programs, which require
that the user, not an automated lookup routine, supply the
footnotes.

The macro manager 730 manipulates and implements mac-
ros in the data viewer 100. Macros allow a user to apply
transformations or calculations to line items on a one-click
basis, instead of having to write formulas or queries.

IV.A.9 Tagging Wizard

The data viewer 100 may also create XML and RDML
documents 102 from spreadsheet files. To this end, it may use
a spreadsheet “wizard” to create tagged documents from a
table of data in a spreadsheet. In one implementation consis-
tent with the present invention, a wizard (using at least one
dialog box) is created in a scripting language (e.g., Excel
Visual Basic for Applications) allowing tabular data in a
spreadsheet (e.g., Excel) to be used as the source for creating
a tagged text document in the RDML format.

FIG. 21 shows a flowchart illustrating steps used in a
method for tagging information from spreadsheets in accor-
dance with the present invention. FIGS. 22A-D depict exem-
plary screen shots for different stages in the document cre-
ation process.

FIG. 22A shows that the user makes the data ready in
tabular form (step 2102). Each row will become one line item;
the first row 2202 will become the data for the “data_x”
element 924. The first column 2204 will populate the “li-
legend” attributes of the respective line items. Note that most
tabular data is already essentially in this form: the category
(or time period) descriptions run across the top, the plain-
language line item descriptions run down the left, and the
values themselves fill the table.

The user then highlights the legends in the left most column
2204 and opens the first dialog box 2206 (step 2104), shown
on FIG. 22B, which will insert new columns for information
in front of the data table, each column containing one type of
attribute (step 2106).

FIG. 22C shows that pressing “OK” on the dialog box 2206
creates the column and fills in the default data (step 2108).
The wizard inputs the desired default values, saving most of
the tedious typing, and the user checks the columns 2208 to
see if changes need to be made. Appendix F shows exemplary
code for routines that perform those functions. For each
attribute, a column is added to the spreadsheet, the correct
value of the attribute is selected (e.g., blank, hand-worded, or

10

15

20

25

30

35

40

45

50

55

60

65

46

taken from the appropriate field in the dialog box), and the
correct number of cells are filled with that value in the appro-
priate column 2208.

FIG. 22D shows that the user then brings up the document
creation dialog 2210 (step 2110). The user first uses the first
entry field 2212 to specify the range of the data table (includ-
ing the attribute columns). The “default” data file will be used
to provide defaults for the rdmldoc-header element 904 val-
ues, as well as other elements and attribute values in the
line_item_set element 906 (step 2112). Finally, the user fills
out the remaining fields and presses “OK”, which causes the
tagged RDML document 102 to be created and saved (step
2114). As would be appreciated by one of ordinary skill in the
art from this disclosure, the information gathered in the exem-
plary dialog boxes could instead be gathered in a single dialog
box before creating RDMI-compliant data.

Appendix G provides code used in one implementation to
create an RDML document 102. Generally, the process com-
prises steps of: (1) opening file and buffers for writing, (2)
calling an element-creation method for each element in the
DTD 702 which can be nested within others, and (3) saving
and closing the files when finished.

IV.A.10. Aspects of RMDL Markup Documents

RDML is designed to be used to describe numbers across
industries and domains. To do so, it provides a basic set oftags
and a matching vocabulary to describe six aspects of a table of
numbers: (1) value, (2) structure, (3) format, (4) semantics,
(5) provenance, and (6) measurement.

Value denotes that numbers are transmitted as strings, with
additional tags to define their data type, degrees of precision,
handling of missing values, handling of nulls, and other direc-
tives to the end application.

Structure refers to a structuring of the data in within a table.
RDML permits records to be arranged hierarchically within a
table. Although not a standard approach for relational tables,
this permits multiple levels of information to be placed in a
single two-dimensional table. Users desire this, for example,
when viewing financial statements, where a single line item
(e.g., “Equipment leasing”) may have several sub-compo-
nents (“Autos,” “Trucks,” “Office Equipment.”)

Format allows the application to present users with num-
bers inhuman readable form. The tags specify default formats
for numbers, internationalization issues such as comma/deci-
mal point handling, and default legends and charttitles. These
formats may be changed by the users at run time.

Semantics refers to the fact that RDML provides generic
tags in which indicators of the “meaning” of the numbers,
including the vocabularies of other SGML and XML markup
languages, can be placed. This allows RDML to act as a
“wrapper” for data from other markup language documents.
Semantic meaning is also conveyed in text-based attributes:
legends, titles, labels, footnotes, etc.

Provenance is the documentation of various elements.
RDML elements include information on the source of the
data, who marked it up, timestamps and link addresses, and
licensing information, etc.

Finally, in the context of generic numbers, “Measurement™
refers to the characteristics necessary to describe the mea-
surement aspects of the domain the number is taken from:
units (“meters”, “feet”), magnitude (“millions”, “billions”),
modifiers (“Adjusted for inflation, 1997 index”), and so forth.
This permits macros to ensure the results of any calculation
are adequately derived and described to the end user.

IV.B. Graphical User Interface and HTML Browser

The screen shots of FIGS. 14A-D, 16 and 17 have been of
the graphical user interface (“GUI”) 734 which has several
responsibilities. Generally, it creates itself and other visual

US 9,262,383 B2

47

components upon start-up of the application, and provides a
central storage place for a minimal number of global variables
of the application (such as file directories, etc.). Further, it
responds to user actions, such as mouse clicks and keyboard
shortcuts, and repaints the screen, or portions of the screen, at
appropriate moments.

The HTML browser 736 may be a third party component
which displays HTML files. Although this browser has been
designated as an HTML browser, one of ordinary skill in the
art would appreciate from this disclosure that other browsers
(e.g., an XML browser) can likewise be used. This component
provides basic web-browsing capabilities and a way to view
hyperlinks for RDML documents 102. Additionally, it acts as
a display window for certain pages generated by the RDML
data viewer 100 (such as RDMIL document source code, chart
documentation, etc.)

IV.C. Reusable Macro Markup Language

FIG. 18 graphically shows elements of the RMML Docu-
ment Type Definition 1800. In one implementation consistent
with the present invention, RMML documents 104 conform
to the rules provided by the DTD 1800. In accordance with
one implementation of the present invention, an RMML DTD
1800 is shown at Appendix D. Attributes and elements of the
DTD 1800 may also be seen in the full sample RMML docu-
ment 104 in Appendix E. These two Appendices D and E are
useful for examining specific attributes and elements of the
RMML DTD 1800.

The RMML DTD 1800 data structure is optimized to pro-
vide information needed in the order in which it is required, to
reduce the learning on the part of new users to RMMIL Macro
development, and to avoid unnecessary duplication. The first
line of the DTD 1800 in Appendix D starts with ‘<?xml
encoding="UTF-8"?>" because XML documents start with a
line that tells the client application, in this case, the RMML
Interpreter 1980 (described below) and the data viewer 100,
what type of document it is and the version of XML.

With further reference to FIG. 18, the DTD 1800 used to
define RMML macro documents 104 is structured in a hier-
archical tree structure of elements. Each element may include
alist of attributes (displayed in Appendix D, but not shown on
FIG. 18) and/or an association with one or more sub-ele-
ments. As with the RDML DTD described above, some
attributes may be required while others may be optional,
depending on design parameters. At the highest level, the
DTD 1800 has three elements descending from a root ele-
ment, <macrodoc>1802. The first element, <macro_header>
1804, contains the metadata for the document as a whole. The
second, <macro_code> 1806 contains the source code
expression to be evaluated, related variables, and instructions
to the application regarding the graphical user interfaces for
any parameters. The third, <macro_references> 1808 con-
tains elements related to remote data (RDML documents 102)
or other macros (RMML documents 104).

The macro_header element 1804 is designed to match, as
closely as possible, the rdmldoc_header element of RDML
documents 102. This saves learning time for developers and
end users, and allows reusable code modules to be built for
both purposes.

Nevertheless, in one implementation consistent with the
present invention, the <macro_header> element 1804 con-
tains several attributes that are unique. In this implementa-
tion, there are 8 unique attributes in the <macro_header>
element 1804. The first of these is “macro_type.” This
attribute tells the application which general capability this
particular macro requires within the context of that applica-
tion. The application uses this attribute in a factory class 1912
to create the correct type of macro object for internal use. Two

10

15

20

25

30

35

40

45

55

60

65

48

example types consistent with this implementation are: (1)
“TSL” (time series line, a macro that works with time series
to create a new line or lines on the chart), and (2) “TSO” (time
series overlay, a macro that works with time series to create a
new overlay on the chart 716, such as gray backgrounds
behind certain time periods.)

The result_type attribute tells the RDML data viewer 100
how to display the results of any transformation created by the
macro. There are, in one implementation, five permissible
values for this string: “Replace Each,” “Replace All,”
“Replace AB,” “Add New,” “Add Annotation,” and “Add
Overlay.” Replace Each removes every line on the chart 716
in the RDML data viewer 100, and replaces it with the trans-
formed version. For example, if there are four series on the
chart, all denominated in “miles”, and user selects a macro “to
kilometers”, then every line will be converted to kilometers,
the miles lines erased, and the kilometers lines placed on the
chart in their place.

Replace All is used where all current lines are being
replaced by one line. For example, if A and B are charted, a
macro called “B as % of A” would replace them with a single
line. Replace AB is a special case of Replace All where there
are only two lines charted. Add New adds a line to whatever
is plotted. For example, a macro called “Average” might draw
a line through the existing line at the average level. Add
Annotation adds a label with a pointer to a certain value on a
chart (e.g., “2-3 Stock Split”). Add Overlay adds a shaded
area behind certain regions of the chart.

The attribute “rdmldoc_type” designates the type of
RDML Document 102 with which the macro is designed to
work. Valid strings for this attribute are TS, CT and XY,
corresponding to the types of RDML Documents 102.

The elements <macro_source> 1810 and <license_terms>
1812 are identical to, and play the same role as, <data_
source> 908 and <license_terms> 914 in the RDML Docu-
ment Type Definition 702. The <documentation> 1814 ele-
ment is a container for two sub-elements: <macro_descrip-
tion> 1816 and <help_page> 1818. The
<macro_description> element contains a short string (e.g.,
under 50 characters) which describes the basic functionality
of'the macro. It appears in the description label of the param-
eters panel 1960 (shown in FIGS. 20A-D and described
below) For users desiring a more detailed description of the
macro, the <help_page> 1818 element contains a text block
that provides this information. This text block can be read by
the data viewer 100 in an HTML pane as part of the regular
help system. This text block is intended to provide informa-
tion on all aspects of the macro that might be of interest to the
user: its use, its code, its parameters, and its inputs.

The second top-level element is <macro_code>1806. This
section contains the actual source code and related variables.
The <code> 1820 element contains one or more expressions
which evaluate to a transformation of certain numbers in the
RDML data viewer 100. In one implementation consistent
with this invention, the transformations apply to the chart
view 716 in the RDML data viewer 102. But transformations
may also be applied to the treeview 720 or other views.

The expression(s) in this element are formulas similar to
those seen in spreadsheet formulas: the expression is a series
of (1) operators, (2) literals, (3) variables, (4) functions, and
(5) miscellaneous expression delimiters. The main difference
from traditional spreadsheet formulas is that the variables
may stand for either scalars or vectors, depending on the
source or the context. A sample expression follows:

A*(B+2000)-IF(4>3,12,45)

US 9,262,383 B2

49

Operators are: addition (+), subtraction (=), multiplication
(*), division (/), less than (<), greater than (>), or (1), and (&).
The operators have different meanings based on the types of
the sub-expressions they work on. Operating on two vectors is
interpreted as element-by-element operation on the two vec-
tors. Thus, A*B, where A and B are vectors, is
C={al*bl,...an*bn}.

Literals are defined either directly in the expression (e.g.,
“46”), or assigned to a variable (e.g., “pi=3.14156").

Variables can come from one of six different places in
RMML. First, they can be defined as variables directly in the
RMML document 104. This is done by creating a <variable>
element and assigning it a default value. Second, variables
can be associated with graphical components in the param-
eters panel 1960 in the RDML data viewer 102. In one imple-
mentation consistent with this invention, there are four dif-
ferent types of “gui components.”” These are listed and
described below under <gui> element 1824. Third, a variable
can be defined from a line item element identical to those
found inan RDML document 102. Because they are identical,
a line item can be simply cut and pasted from an RDML
document 102 to an RMML document 104. Fourth, a variable
can be drawn from a remote source. In one implementation
consistent with the present invention, that remote source can
be a hyperlink to a line item in an RDML document 102. This
is accomplished by using an Xpointer hyperlink in the “href”
attribute of a variable element. Fifth, a variable can be defined
as one of the series of data that is currently plotted on the
chart. In one implementation in accordance with the present
invention, there can be a maximum of six series on the chart;
each can be accessed by using the reserved words A, B, C, D,
E, and F. As would be appreciated by one of ordinary skill in
the art, any number of uniquely definable series may be used.
Ifthe result type attribute of a macro is “Replace All”, then the
expression is evaluated once for each series, with A being the
series currently being transformed. Sixth, variables can be
taken from an RDML document 102 that is already loaded in
the RDML data viewer 100. In this case, the expression indi-
cates the URL and a class string that can be found in one of the
li_class elements of a line item element. The expression then
uses that line item as the variable value.

Functions that are built in are provided by the interpreter
1980 in one implementation consistent with the present
invention and are a principal means of extending the lan-
guage. These are in the form “FUNCTION_NAME((expres-
sion)”. Functions include: IF(x,y,z); SUM(x); AVERAGE(x);
COUNT(®x); MIN(x); MAX(x) and so forth.

Miscellaneous delimiters are implemented by separating
expressions by a semi-colon (;). This indicates that the
expressions are to be evaluated in order. Expressions can also
be grouped in parentheses to tell the interpreter 1980 how to
evaluate sub-expressions.

Any string appearing in the <instructions> element 1822
will be displayed in the parameters panel 1960 to give the user
any last minute instructions or suggestions. The <gui> ele-
ment 1824 contains any number of elements that describe
graphical components. These graphical components will
appear in the parameters panel 1960 to give the user the ability
to make changes to the macro’s parameters. Four gui compo-
nents (not shown) may be: <comp_vector>, <comp_list>,
<comp_rbutton>, and <comp_ipanel>. The <comp_vector>
is a vector variable, where the individual values of the vector
can be viewed in a scrolling list box. A <comp_list> element
is a scrolling list; each time the user clicks on a different item,
the value of the variable attached to that component is
changed to the value associated with that item. A <com-
p_rbutton> is a collection of radio buttons; each is associated

10

15

20

25

30

35

40

45

50

55

60

65

50

with a different value. As the user clicks on different buttons,
the value associated with the component itself is changed, and
the macro is re-run. A <comp_ipanel> is an input field that
allows the user directly to input changes to the macro.

Generally, macros are not meant to run blindly on all data.
First, the interpreter 1980 checks if the macro has any “quali-
fiers” that must be checked against the data. If there are any
strings in the <qualifiers> element 1826 of the RMML docu-
ment 104, these are checked against strings in the <li_class>
element 930 or other elements or attributes of the data. If the
data is qualified, the interpreter 1980 will proceed with run-
ning the macro. For example, if the <qualifiers>element 1826
of the macro specifies “li_unit==currency”, then the macro
will only be run if the li_unit attribute of the data being
operated on is a currency value.

The <error_handling> element 1828 holds error messages
that can be displayed by the RDML data viewer 100 if there
are problems of an indicated type. The <testing> element
1830 holds instructions to testing applications regarding
automated testing routines. These applications undertake
basic unit testing such as checking for out-of-bounds prob-
lems, missing value problems, divide-by-zero issues, etc.

The third major section of the RMML document 104, the
<macro_references> element 1808 holds references to out-
side macros and data sets that might be incorporated into the
macro by reference. The two sub-elements are, accordingly,
the <rmmldocs> element 1832 and the <data_docs> element
1834.

IV.C.1. RMML Macro Package

Generally, there are three major areas of the RMMIL. Macro
Package: the RMML document handling classes (FIG. 19A),
the graphical interface (FIG. 19B), and the macro interpreter
(FIG. 19C). In one implementation consistent with the
present invention, this package of software classes connects
to the RDML data viewer 100 in only a few places: it gets data
from the ChartManager 714/ChartData 715 objects, posts its
graphical components through the GUI 734 object, and can
access the loaded RDML documents 102 in the Primary Data
Store 712.

RMML Document Handling

FIG. 19A shows objects responsible for managing the pro-
cess of RMML document handling: loading documents, cre-
ating internal macro objects from them, cataloging them and
caching them, and making them ready for use as objects. The
RMMLDoc Reader 1910 locates an RMML Document 104
(either locally or over the internet) passes it to an XML Parser
706 (which may be a third-party component), relays error
messages if any to the RDML data viewer 100, creates an
internal representation of the RMML Document 104 as an
RMMLDoc 1906 object, and places a reference to the
RMMLDoc 1906 in the RMML_Lib 1908.

The RMMLDoc 1906 can be structured in two ways: either
wrapping a TXDocument object to arrive at an RMMIL.Doc
1906, or creating a new RMMLDoc 1906 object with the data
from the TXDocument.

The RMMLDoc 1906 object contains methods for access-
ing individual elements and attributes of the document in a
way that is easy to comprehend in the context of the macro
package. The RMML._Lib 1908 object is a cache for loaded
and active RMMLDoc objects 1906.

The RMMLDoc 1906 is a raw collection of data about a
macro—its formula, its help text, etc.—and generally does
not act on data sets to transform them. The macro’s capabili-
ties first have to be used to create an internal object (macro
interface 758) that is capable of doing the calculations. This
internal macro object 758 is created by a collaboration
between the MacroLibrary 1926 object (which is a cache of

US 9,262,383 B2

51

the graphic objects for the active macros) and the MacroFac-
tory 1912 (which determines which type of internal macro to
create.)

There are four types of internal macros: time series (TS),
category (CT), xy plot (XY) and overlay (OVERLAY). The
macro_type attribute is used by the MacroFactory 1912 to
create the correct type of internal macro: Macro_TSL 1918,
Macro_CT 1920, Macro_XY 1922, and Macro_OVER 1924
respectively. The MacroAdapter 1916 class performs the
work of the macros.

TABLE 7

MacroAdapter

—-mm : MacroManager

-mem : Memento

-rmmldoc : RMMLDoc

—eval : Evaluator

-mag : MacroAssumptionGroup

—desc : MacroDescription

-isChangedFlag : boolean

—result_type : int

—curr_li : int

—series_label_modifier : String
—series_label_type : String

+createMemento() : void
+evaluateFormula(strExpr : String, index : int) : Vector
+initMacro() : void
+performTransformation(result_type : int) : void
+replaceVariable(strExpr : String, index : int) : String
+resetMemento(mem : MacroMemento) : void
+undoTransformation() : void
+updateChartTitle() : void

+updateLabels() : void

+updateLegend() : void

+updateYAxisTitle() : void

Described below are class methods shown in Table 7 of a
MacroAdapter object 760 in accordance with one implemen-
tation consistent with the present invention. First, MacroAd-
apter() is the constructor that creates a MacroAdapter 760
object. Before a macro is run, it has a chance to make a copy
of'the data that it is about to transform so that undo operations
can be performed. The createMemento() method takes a
snapshot of the data plotted on the chart by copying the
ChartData object 715 to a Memento object.

Also, before a macro is run, the method initMacro() is run
and gives the macro a chance to load any remote data or macro
code. The replaceVariable() method runs the macro on mul-
tiple series on a chart. For example, if the result_type is
“Replace Each” and there are four series charted on the chart,
the macro will be run four times. The first time, A in the
formula represents the first series, the second time it repre-
sents the second series and so forth. The method per-
formTransformation() evaluates the transformation string,
and updates the various titles and legends. An important part
of performTransformation()’s code is to determine the
result_ type of the macro and call the evaluateFormula()
method in the correct manner. For “Replace Each,” it is called
once for each series, while for “Replace All,” it is run only
once.

The performTransformation() method also calls the four
update methods: updateChartTitle() updateLabels(),
updateLegend() and updateYAxisTitle(). Each of these
modifies the relevant strings in the ChartData object 715 so it
can be passed on to the chart.

RMML Graphical Interface

FIG. 19B illustrates objects responsible for managing the
process of creating, managing, and handling events from the
graphical user interface 734. FIG. 20A shows a screen shot of

10

15

20

25

30

40

45

52

the RDML data viewer 100; the NewMacroPanel 732 is dis-
played in the lower half of the screen. The available macros
are displayed in individual windows in the MacroLibrary
panel 1926 on the left side of the lower panel. The right side
of the macro panel 732 is the macro information panel 2002
which holds the macro description panel 1958 and the param-
eter panel 1960.

The NewMacroPanel 732 may be a subclass of a JPanel
1942 in Java’s Swing set of classes. Those skilled in the art
will be able to chose the appropriate class to use for other
major platforms. The left side of the NewMacroPanel 732 is
a frame for a multiple document interface (in this case, a
Desktop for JinternalFrame objects from Java’s Swing Set).
Each MacroLibrary 1926 that is opened created a new inter-
nal frame, which allows users to select macros from multiple
libraries at the same time.

When a MacroLibrary 1926 is opened, all macros within it
are loaded and registered. “Registration” is a series of meth-
ods wherein the macro’s variables are found in various ele-
ments of the RMMLDoc 104, and graphical representations
of'these variables are built for inclusion in the parameter panel
1960.

The graphical components for all of the variables associ-
ated with a set of macros are created in the MacroAssump-
tionGroup 1944 class. This class has a factory method that
examines the attributes of the variables reported by the
RMMLDoc 104 (variable name, variable value, gui type,
default value, etc.) and creates the appropriate MacroGUI
class: MacroGUI_List 1952 (see FIG. 20A), MacroGUI_Ra-
dioButton 1954 (see FIG. 20B), MacroGUI_Vector 1956 (see
FIG. 20C), or MacroGUI_Default 1950 (see F1G. 20D). Each
of these graphical components appears differently in the
parameter panel 1960 as shown in the screen shots noted.

The registration of macros by the MacroLibrary 1926 also
involves creating an MVariable 1946 object to go with each
variable, and adding these to a cache of available Mvariables
1946. These Mvariable 1946 objects are used in the actual
evaluation of expressions. The registration process also
involves registering the MacroGUI 1948 objects as sources
for events that the MacroManager 1980 object can use to
trigger the running of a macro. Mvariables 1946 encapsulate
the various characteristics of a variable: its value, default, and
source.

The description panel 1958 and the parameter panel 1960
are populated with graphical components and text when a
particular macro is selected in the treeview 720 listing of a
MacroLibrary 1926 internal frame. The macro that is selected
provides the description text, the various labels and the Mac-
roGUI 1948 components.

RMML Interpreter

The MacroManager object 730 is responsible for detecting
that a macro has been selected or a parameter changed, get-
ting the various data sets and variables called up and made
available to an Evaluator object 1984, and that the data set
charted (or showing on the treeview 720) is obtained and
transformed and sent back to be recharted on the chart 716 or
relisted on the treeview.

ChartData 715 contains the data from the current chart 716
(or active treeview 720, depending on the type of the macro).
It makes this data available as just another variable to the
Evaluator object 1984, and takes the final result of the Evalu-
ator object 1984.

The Evaluator 1984 evaluates the string expression(s) in
the <code> element 1920 of the RMML document 104, or the
various expressions from the macros that have been selected.
The expression is broken up into tokens by the Tokenizer
classes 1994. These tokens are the various operators, vari-

US 9,262,383 B2

53

ables, literals, functions and other control symbols used in the
RMML expression language detailed above. From these
tokens, the Formula object 1990 builds a parse tree, by recur-
sive descent, made up of FormulaNode 1992 objects created
from the tokens. The FormulaNode 1992 objects evaluate
themselves using the resolver objects VariableResolver 1986
and FunctionResolver 1988. These resolvers in turn call the
Evaluator objects 1984 to give them the current value of a
variable or a function. For example, the FormulaNode 1982
evaluation process may have an “A” token; the Evaluator
object 1984 knows that this means series A on the chart, and
uses the vector of data (it could be an array or other data
structure) currently found in the chart 716. The formula
exception 1996 relays errors associated with the processing
of a function.

The foregoing description of an implementation of the
present invention has been presented for purposes of illustra-
tion and description. It is not exhaustive and does not limit the
present invention to the precise form disclosed. Modifications
and variations are possible in light of the above teaching or
may be acquired from practicing of the present invention. The
scope of the present invention is defined by the claims and
their equivalents.

10

15

20

54

US 9,262,383 B2
55 56

APPENDIX A: RDML Document Type Definition ("DTD")
<?7xml encoding="UTF-8"7>

<!-- The root element: a whole portfolio of data is an "rdmldoc” -->
<!ELEMENT rdmldoc (rdmldoc_header, line_item_set)>

<!-- RDMLDOC_HEADER -->

<!-- Information about the rdmldoc. An rdmldoc consists of an rdmldoc_header
and a line_item_set. Line items in the line_item_set share a
common data structure.

->

<!ELEMENT rdmldoc_header (data_source?, formatting_source?, rdmldoc_source?,
license_terms?, linkset?)>
<!ATTLIST rdmldoc_header

rdmldoc_ID CDATA #REQUIRED
doc_title CDATA #REQUIRED
timestamp CDATA #REQUIRED
version CDATA #IMPLIED
expiration CDATA #IMPLIED
freq_of_update CDATA #IMPLIED
num_line_items CDATA #IMPLIED
num_datapoints CDATA #IMPLIED
x_indexes CDATA #IMPLIED
first_li_withdata CDATA #IMPLIED >

<!ELEMENT data_source (contact_info+)>
<!ELEMENT formatting_source (contact_info+)>
<!ELEMENT rdmldoc_source (contact_info+)>

<!ELEMENT license_terms (contact_info?, linkset?)>
<!ATTLIST license_terms

copyright_cite CDATA #REQUIRED
holder CDATA #REQUIRED
license_type CDATA #IMPLIED
warranty CDATA #IMPLIED
disclaimer CDATA #IMPLIED
terms CDATA #IMPLIED
date CDATA #IMPLIED
email CDATA #IMPLIED

state CDATA #IMPLIED

US 9,262,383 B2
57 58

country CDATA #IMPLIED >

<!ELEMENT contact_info (#PCDATA)>
<!ATTLIST contact_info

role CDATA #REQUIRED
name CDATA ‘ #IMPLIED
company CDATA #IMPLIED
address CDATA #IMPLIED
city CDATA #IMPLIED
state CDATA #IMPLIED
zip CDATA #IMPLIED
country CDATA #IMPLIED
email CDATA #IMPLIED
form CDATA #IMPLIED
href CDATA #IMPLIED
comments CDATA #IMPLIED >

<!ELEMENT linkset (link*)>

<!ATTLIST linkset
form CDATA #FIXED 'extended’
href CDATA #IMPLIED >

<!ELEMENT link (#PCDATA) >
<!ATTLIST link

form CDATA #FIXED 'simple’

href CDATA #REQUIRED

behavior CDATA #IMPLIED
content-role CDATA #IMPLIED
content-title CDATA #IMPLIED

role CDATA #IMPLIED

title CDATA #IMPLIED

show CDATA #FIXED 'new'

actuate CDATA #FIXED 'user' >

<!-- LINE_ITEM_SET -->
<!-- Information about the collection of line items -->

<!ELEMENT line_item_set (data_x, li_class_set?, linkset?, line_item+) >
<!ATTLIST line_item_set

line_item_set_type = CDATA #REQUIRED
time_period CDATA #REQUIRED
character_set CDATA #IMPLIED

missing_values CDATA #IMPLIED

US 9,262,383 B2

59 60
null_values CDATA #IMPLIED
zero_values CDATA #IMPLIED
dates_values CDATA #IMPLIED
percentages CDATA #IMPLIED >

<!ELEMENT data_x (#PCDATA) >

<IATTLIST data_x
x_title CDATA #REQUIRED
format CDATA #REQUIRED
X_notes CDATA #IMPLIED
X_desc CDATA #IMPLIED
X_prec CDATA #REQUIRED
X_unit CDATA #REQUIRED
X_mag CDATA #REQUIRED
Xx_mod CDATA #REQUIRED
X_measure CDATA #REQUIRED
X_scale CDATA #REQUIRED
X_adjustment CDATA #REQUIRED
x_links CDATA #REQUIRED >

<!ELEMENT li_class_set (li_class+)>

<!ELEMENT li_class (#HPCDATA)>

<IATTLIST li_class
class_name CDATA #REQUIRED
parent_class CDATA #REQUIRED
form CDATA #FIXED 'simple’
href CDATA #IMPLIED
description CDATA #IMPLIED >

<!--LINE_ITEM -->

<!-- Information about the Line Item -->,

<!ELEMENT line_item (data_x?, data_y, linkset?, note_set?) >

<IATTLIST line_item
li_ID CDATA #REQUIRED
li_legend CDATA #REQUIRED
li_title CDATA #REQUIRED
li_cat CDATA #IMPLIED
y_axis_title CDATA #REQUIRED
level CDATA #REQUIRED
format CDATA #REQUIRED
relation CDATA #REQUIRED

US 9,262,383 B2

61 62
li_notes CDATA #REQUIRED
li_desc CDATA #REQUIRED
li_prec CDATA #REQUIRED
li_unit CDATA #REQUIRED
li_mag CDATA #REQUIRED
li_mod CDATA #REQUIRED
li_measure CDATA #REQUIRED
li_scale CDATA #REQUIRED
li_adjustment CDATA #REQUIRED
li_aggregation CDATA #IMPLIED >

<!ELEMENT data_y (#PCDATA)>
<!ELEMENT analysis (linkset?)>
<!ELEMENT note_set (note+)>
<!ELEMENT note (#PCDATA)>

<!ATTLIST note
© note_type CDATA #IMPLIED >

63

<rdmldoc>
<rdmldoc_header

US 9,262,383 B2
64

APPENDIX B: Sample RDML Document

rdmldoc_ID = "rdml_thomson_cs1"
doc_title = "Computer Services Companies”

timestamp = "1999-01-19T23:00:00"
version = "1.0.0"

expiration = "2000-01-19T23:00:00"
freq_of_update = "Annual" -
num_line_items = "0"
num_datapoints = "0"

X_indexes = "-9, -8, -7"
first_li_withdata ="3" >

<data_source>
<contact_info

role = "Data Source” -

name = "Russell T. Davis"
company = "RDML, Inc."
address = "2 Wisconsin Circle, Suite 700"
city = "Chevy Chase"

state = "MD"

zip = "20815"

country = "USA"

email = "rt_davis@sprynet.com"
xlink:form = "simple"

href = "http://www.rdml.com”
comments = "" >

</contact_info>
</data_source>

<formatting_source>

<contact_info

role = "Formatting Source”
name = "Russell T. Davis"
company = "RDML, Inc."
address = "2 Wisconsin Circle, Suite 700"
city = "Chevy Chase"

state = "MD"

zip = "20815"

country = "USA"

email = "rt_davis @sprynet.com"
xlink:form = "simple"

href = "http://www.rdml.com”
comments = "" >

US 9,262,383 B2
65 66

</contact_info>
</formatting_source>
<rdmldoc_source>
<contact_info
role = "RDMLDoc Source"
name = "Russell T. Davis"
company = "RDML, Inc."
address = "2 Wisconsin Circle, Suite 700"
city = "Chevy Chase"
state = "MD"
zip = "20815"
country = "USA"
email = "rt_davis@sprynet.com"
xlink:form = "simple”
href = "http://www.rdml.com"
comments = "" > '
</contact_info>
</rdmldoc_source>
<license_terms
copyright_cite = "Copyright 1998, RDML, Inc. All Rights Reserved"
holder = "RDML, Inc."
license_type = "Payment Per Download"
warranty = "No warranty is expressed or implied. Use this data at your own risk."
disclaimer = "This data is provided 'as-is'. The provider assumes no
responsibility for its use or misuse."
terms = "$1 per RDMLDoc download"
date = "1999.0123000000.00"
email = "license @rdml.com”
href = "http://www.rdml.com" state = "MD" country = "USA" >

<contact_info
role = "RDMI.Doc Source"
name = "Russell T. Davis"
company = "RDML, Inc."
address = "2 Wisconsin Circle, Suite 700"
city = "Chevy Chase"
state = "MD"
zip = "20815"
country = "USA"
email = "rt_davis@sprynet.com"”
xlink:form = "simple"
href = "http://www.rdml.com"
comments = "" >
</contact_info>
</license_terms>

US 9,262,383 B2
67 68

</rdmldoc_header>

<line_item_set
line_item_set_type = "Category"
time_period = ""
character_set =
missing_values =
null_values =""
zero_values =
dates_values =
percentages = ""

mn

nn

"n

>

<data_x
x_title = "Company”
format = ""
X_notes =
x_desc =
x_prec=""
X_unit =
X_mag=""
x_mod =
X_Ineasure =
X_scale=""
x_adjustment =
Xx_links ="">
AUD, BSYS, CEN, CSC, CVG, DST, EDS, FISV, GLC, PAYX, TSG, SDS </data_x>

«li_class_set>

<li_class
class_name =
parent_class =
xlink:form = "simple"
href = ""
description = "" > </li_class>

</li_class set>

<linkset>

<link

xlink:form = "simple"
href = "http://www.rdml.com"
behavior = ""
content-role =
content-title =
role = "Original Data Sources"
title = "RDML. Formatted Source Table"
show = "new"
actuate = "user" > </link>

"un

Uil

"o

o

e

"

"nn

"

US 9,262,383 B2
69

</linkset>

<line_item

‘ li_ID="1"
li_legend = "Computer Services Companies"”
li_title = ""
li_cat=""
y_axis_title =
level = "1"
format =""
relation = "Parent”
li_notes = ""
li_desc =""
li_prec =
li_unit =
li_mag =
li_mod =
li_measure =
li_scale = ""
li_adjustment = "">

<data_y> '

m"n

UL
mnn

"t

nn

AL

' 1 ! ' 1 L 1 1 ' 1 ' 1

</data_y>

<linkset>

<link
xlink:form = "simple"
href = "http://www.rdml.com"
behavior =""
content-role =
content-title = ""
role = "Original Data Sources"”
title = "RDML Formatted Source Table"
show = "new"
actuate = "user" > </link>
</linkset>

LAl

</line_item>

<line_item
li_ID="2"
li_legend = "Stock Performance”
Ii_title = "Stock Overview"
li_cat=""
y_axis_title =
level = "2"

"

US 9,262,383 B2
71

LI}

format =
relation = "Parent”
li_notes =""
li_desc =""
li_prec =
li_unit =
li_mag =
li_mod =
li_measure =
li_scale=""
li_adjustment = "">
<data_y>

n
L)

i

1AL}

AL

' 1 t ' ' 1 1 t 1 1 L 1

</data_

<linkset>

<link
xlink:form = "simple"
href = "http://www.rdml.com"
behavior = ""
content-role =
content-title =
role = "Original Data Sources"
title = "RDML Formatted Source Table"
show = "new"
actuate = "user" > </link>

"

"y

</linkset>

<fline_item>

<line_item
li_ID ="3"
li_legend = "Stock Price (12/31/98)"
li_title = "Stock Overview"

li_cat=""
y_axis_title = "$ per share (12/31/98)"
level = "3"

format = "#, ##0.00; (#, ##0.00)"
relation = "ChildStyle"

li_notes =""
li_ desc=""

li_prec = "2"
li_unit ="§"
li_mag = "0"

li_mod = "per"

US 9,262,383 B2
73 74

li_measure = "share"
li_scale=""
li_adjustment = "">

<data_y>

40.1, 51.63, 69.81, 64.44, 22.13, 67.06, 50.19, 51.44, 43.5, 51.44, 44.5, 39.69,
</data_y>
<linkset>
<link

xlink:form = "simple"”
href = "http://www.rdml.com”
behavior = ""
content-role =
content-title =
role = "Original Data Sources”
title = "RDML Formatted Source Table""
show = "new"
actuate = "user" > </link>

LAl

</linkset>

</line_item>

<line_item
li_ID ="4"
li_legend = "Shares Outstanding"
li_title = "Stock Overview"

li_cat=""
y_axis_title = "Shares outstanding”
level ="3"

format = "#, ##0; (#, ##0)"
relation = "ChildStyle"

li_notes =""
li_desc=""
li_prec = "0"
li_unit = "shares"
li_mag="6"
li_mod = ""
li_measure =""
li_scale=""
li_adjustment = "">

<data_y>

627,27, 74, 162, 145, 64, 494, 85, 105, 166, 131, 107,

</data_y>

<linkset>

<link

xlink:form = "simple"

US 9,262,383 B2
75

href = "http://www.rdml.com"
behavior = ""
content-role =
content-title =
role = "Original Data Sources"

title = "RDML Formatted Source Table"
show = "new"

actuate = "user" > </link>

we

"

</linkset>

</line_item>

<line_item
li_ID="5"
li_legend = "% Institutional Holdings"
li_title = "Stock Overview"

li_cat=""
y_axis_title = "% of outstanding shares"
level = "3"

format = "0.00%; (0.00%)"
relation = "ChildStyle"

li_notes =""
li_desc =""
li_prec = "2"
li_unit = "%"
li_mag = "0"
li_mod = "of"
li_measure = "outstanding shares"
li_scale =""
li_adjustment = "">
<data_y>

0.65, 0.8, 0.75, 0.64, 0, 0.44, 0.49, 0.67, 0.25, 0.53, 0.13, 0.71,

</data_

<linkset>

<link
xlink:form = "simple"
href = "http://www.rdml.com”
behavior = ""
content-role =
content-title = :
role = "Original Data Sources"
title = "RDML Formatted Source Table"
show = "new"
actuate = "user” > </link>

"

US 9,262,383 B2

77 78
</linkset>
</line_item>
<line_item
li_ID = ”6"

li_legend = "Market Capitalization"
li_title = "Stock Qverview"

li_cat=""
y_axis_title = "$ in Millions"
level = "3"

format = "#, ##0; (#, ##H0)"
relation = "ChildStyle"

li_notes =""
li_desc =""
li_prec = "0"
li_unit ="$"
li_mag = "6"
li_mod = "in"
li_measure = ""
li_scale =""
li_adjustment = "">
<data_y>

25142.7, 1394.01, 5165.94, 10439.28, 3208.85, 4291.84, 24793.86, 4372.4, 4567.5,
8539.04, 5829.5, 4246.83,
</data_y>
<linkset>
<link
xlink:form = "simple"
href = "http://www.rdml.com"
behavior = ""
content-role =
content-title =
role = "Original Data Sources"
title = "RDML Formatted Source Table"
show = "new"
actuate = "user" > </link>

mnn

AL}

</linkset>

<fline_item>

<line_item
li_ID="7"
li_legend = "Reported EPS"
li_title = "Stock Overview"
li_cat=""

US 9,262,383 B2
79

y_axis_title = "Earnings per share"
level ="3"

format = "#, ##0.00; (#,##0.00)"
relation = "ChildStyle"”

li_notes =""
li_desc=""
li_prec = "2"
li unit ="$"
li_mag = "0"

li_mod = "per"
li_measure = "share"
li_scale =""
li_adjustment = "">

<data_y>

1.13,2.05,1.9,2.1,0.71, 1.48, 1.7, 1.35, 1.86, 0.82, 1.72, 1.17,

</data_y>

<linkset>

<link-
xlink:form = "simple"
href = "http://www.rdml.com" .
behavior = ""
content-role =
content-title =
role = "Original Data Sources"
title = "RDML Formatted Source Table"
show = "new"
actuate = "user" > </link>

"

nn

</linkset>

</line_item>
<line_item
li_ID ="8"
li_legend = "Earnings”
li_title = "Stock Overview"

li cat=""
y_axis_title ="$ in Millions"
level = "3"

format = "#, ##0; (#,##0)"
relation = "ChildStyle"

li_notes =""
li_desc=""

li_prec ="0"
li_unit ="$"

li_mag="6"

US 9,262,383 B2
81 82

li_mod = "in"
li_ measure =
li_scale =""
li_adjustment = "">
<data_y>
708.51, 55.35, 140.6, 340.2, 102.95, 94.72, 839.8, 114.75, 195.3, 136.12,
225.32, 125.19,
</data_y>
<linkset>
<link
xlink:form = "simple"
href = "http://www.rdml.com"
behavior=""
content-role =
content-title =
role = "Original Data Sources"
title = "RDML Formatted Source Table"
show = "new"
actuate = "user" > </link>

nn

"

</linkset>

<fline_item>

<line_item
li_ID = "9"
li_legend = "Cash Flow per share"
li_title = "Stock Overview"

li_cat=""
y_axis_title = "$ per share"
level — l|3"

format = "#, ##0; (#,##0)"
relation = "ChildStyle"

li_notes = ""
li_desc=""

li_prec = "2"
li_unit = "$"
li_mag = "0"

li_mod = "per”
li_measure = "share"

li_scale =""
li_adjustment = "">
<data_y>
1.41,2.13,3.71,4.95, 1.39, 3.18, 4, 1.98, 3.44,0.96, 3.2, 2.5,
</data_y>

<linkset>

US 9,262,383 B2
83 84

<link
xlink:form = "simple"
href = "http://www.rdml.com"”
behavior=""
content-role =
content-title =
role = "Original Data Sources"
title = "RDML Formatted Source Table"
show = "new"
actuate = "user" > </link>

"o

LD

</linkset>
</line_item>

<line_item
li_ID="10"
li_legend = "Cash Flow"
1i_title = "Stock Overview"

li_cat=""
y_axis_title = "$ in Millions"
level = "3"

format = "#, ##0; (#, ##0)"
relation = "ChildStyle"

li_notes = ""
li_desc=""
li_prec = "0"
li_unit ="$"
li_mag ="6"
li_mod = "in"
li_measure = ""
li_scale=""
li_adjustment = "">
<data_y>

884.07, 57.51, 274.54, 801.9, 201.55, 203.52, 1976, 168.3, 361.2, 159.36, 419.2,
267.5,
</data_y>
<linkset>
<link
xlink:form = "simple"
href = "http://www.rdml.com”
behavior = ""
content-role =
content-title =
role = "Original Data Sources"

nn

US 9,262,383 B2

85

title = "RDML Formatted Source Table"
show = "new"
actuate = "user" > </link>

</linkset>

</line_item>
<line_item
li_ID="11"
li_legend = "Price/Earnings Ratio (PE)"
li_title = "Stock Overview"
li_cat=""
y_axis_title = "P/E Ratio"
level = "3"
format = "#, ##0; (#,##0)"
relation = "ChildStyle"

li_notes =""

li_desc =""

li_prec = "2"

li_unit = "P/E Ratio"

li_mag = "0"

li_mod =""

li_measure = ""

li_scale =""

li_adjustment = "">
<data_y>

35.4867256637168, 25.1853658536585, 36.7421052631579,
31.169014084507, 45.3108108108108, 29.5235294117647,

86

30.6857142857143,
38.1037037037037,

23.3870967741935, 62.7317073170732, 25.8720930232558, 33.9230769230769,

</data_y>
<linkset>
<link

xlink:form = "simple"
href = "http://www.rdml.com”
behavior = ""
content-role = """
content-title = ""
role = "Original Data Sources"
title = "RDML Formatted Source Table"
show = "new"
actuate = "user" > </link>

</linkset>

US 9,262,383 B2
87 88

<fline_itern>

<line_item
li_ID ="12"
li_legend = "Estimated 5-year growth"
1i_title = "Stock Overview"

li_cat=""
y_axis_title = "% grqwth"
level = "3"

format = "0.00%; (0.00%)"
relation = "ChildStyle"
li_notes = ""
li_desc =""
li_prec = "2"
li_uvnit = "%"
li_mag = "0"
lit_mod = ""
li_measure =
li_scale=""
li_adjustment = "">

<data_y>

0.15,0.18, 0.2, 0.22, 0.23, 0.22, 0.15, 0.2, 0.15, 0.3, 0.13, 0.2,
</data_y>
<linkset>
<link

xlink:form = "simple"
href = "http://www.rdml.com"
behavior = ""
content-role =
content-title =
role = "Original Data Sources"
title = "RDML Formatted Source Table"
show = "new"
actuate = "user" > </link>

e

1"

</linkset>

US 9,262,383 B2
89 90

</line_item>

<line_item
li_ID ="13"
li_legend = "Return on Equity”
li_title = "Stock Overview"

li_cat=""
y_axis_title = "Earnings as % of Book Value"
level = "3"

format = "0.00%; (0.00%)"
relation = "ChildStyle"
li_notes=""
li_desc=""
li_prec = "2"
li_unit = "%"
li_mag = "0"
li_mod=""
li_measure =
li_scale = ""
li_adjustment = "">
<data_y>

"

1 1 ' 1 1 ! ' ' 1 t 1

</data_y>
<linkset>
<link

xlink:form = "simple"
href = "http://www.rdml.com"
behavior = ""
content-role =
content-title =
role = "Original Data Sources"
title = "RDML Formatted Source Table"
show = "new"
actuate = "user" > </link>

"

nn

</linkset>
<fline_item>
</line_item_set>
</rdmldoc>

US 9,262,383 B2
91 92

APPENDIX C: UnitList XML document

<?xml version="1.0" encoding="utf-8" 7>
<unitlist>
<unit name="inch">
<conversion
conv_target = "centimeter”
conv_factor = "2.5400050"
conv_constant = ""
conv_log=""
conv_source = "FGM"
conv_href="">
</conversion>
<type>Length</type>
<subtype>Linear</subtype>
<plural>inches</plural>
<alias>in</alias> :
<desc>Approximately the width of a man's thumb.</desc>
<icon href="inch.gif"></icon>
<funit>

<unit name="foot">
<conversion
conv_target = "meter"
conv_factor = "0.30480060"
conv_constant =""
conv_log =""
conv_source = "ISO"
conv_href ="">
</conversion>
<type>length</type>
<subtype>Linear</subtype>
<plural>feet</plural>
<alias>ft</alias>
<desc>Originally, the average length of a human foot</desc>
- <icon href="foot.gif"></icon>
</unit>

<unit name="yard">
<conversion
conv_target = "meter”
conv_factor = "1.082"
conv_constant = ""
conv_log=""
conv_source = "[SO"

US 9,262,383 B2
93 94

conv_href ="">
</conversion>
<type>length</type>
<subtype>Linear</subtype>
<plural>yards</plural>
<alias></alias>
<desc>Three feet</desc>
<icon href="yard.gif"></icon>
</unit>

<unit name="meter">
<conversion
conv_target = "meter"
conv_factor = "1.0"
conv_constant = ""
conv_log ="".
conv_source = "ISO"
conv_href ="">
</conversion>
<type>length</type>
<subtype>Linear</subtype>
<plural>meters</plural>
<alias>m,mtr</alias>
<desc>0One thousandth of a kilometer</desc>
<icon href="meter.gif"></icon>
</unit>

<unit name="mile">
<conversion
conv_target = "kilometer"
conv_factor = "1.6093472"
conv_constant = ""
conv_log =""
conv_source = "FGM"
conv_href="">
</conversion>
<type>length</type>
<subtype>Linear</subtype>
<plural>miles</plural>
<alias></alias>
<desc>English surveying unit, set to be equal to 8 furlongs.</desc>
<icon href="mile.gif"></icon>
</unit> ’

<unit name="dollar">

US 9,262,383 B2
95 96

<conversion
conv_target = "pound”
conv_factor="1.312"
conv_constant = ""
conv_log =""
conv_source = "[SO"
conv_href ="">
</conversion>
<type>currency</type>
<plural>pounds</plural>
<alias>sterling</alias>
<desc>British pound sterling. </desc>
<icon href="pound.gif"></icon>
</unit>
<unit name="Deutschmark">
<conversion
conv_target = "dollar"
conv_factor = "1.732"
conv_constant = ""
conv_log =""
conv_source = "ISO"
conv_href = "">
</conversion>
<type>currency</type>
<plural>Duetschmarks</plural>
<alias>Marks</alias>
<desc>German Deutschmarks</desc>
<icon href="marks.gif"></icon>
</unit>

<unit name="Francs">

<conversion
conv_target = "dollar"
conv_factor ="0.812"
conv_constant = ""
conv_log=""
conv_source = "[SO"
conv_href ="">

- </conversion>

<type>currency</type>

<plural>francs</plural>

<alias>ff</alias>

<desc>French francs</desc>

<icon href="francs.gif"'></icon>

US 9,262,383 B2
97 98

</unit>

<unit name="acres">
<conversion
conv_target = "square meter"”
conv_factor = "5§125" -
conv_constant = ""
conv_log=""
conv_source = "ISO"
conv_href ="">
</conversion>
<type>area</type>
<plural>acres</plural>
<alias>acr</alias>
<desc>In medieval times, the amount of land one man could plow in one day.</desc>
<icon href="acre.gif"></icon>
</unit> ‘

<unit name="square foot">
<conversion '
conv_target = "square meter"
conv_factor = "0.15"
conv_constant = ""
conv_log=""
conv_source = "ISO"
conv_href = "">
</conversion>
<type>area</type>
<plural>square feet</plural>
<alias>sq ft</alias>
<desc>An area one foot by one foot.</desc>
<icon href="sqfoot.gif"></icon>
</unit>

</unitlist>

US 9,262,383 B2
99 100

APPENDIX D: RMML Document Type Definition (“DTD”)
<7xml encoding="UTF-8"7>

<l-- The root element: a whole macro is a "macrodoc".
A macrodoc consists of three elements:
a macro_header, a macro_code, and a macro_references element.
— .
<!ELEMENT macrodoc (macro_header, macro_code, macro_references)>

<!-- MACRO_HEADER -->
<!-- Information about the macro.
-

<!ELEMENT macro_header (macro_source, license_terms, linkset?, documentation)>
<!ATTLIST macro_header

macrodoc_ID CDATA #REQUIRED
macro_title CDATA #REQUIRED
~macro_type CDATA #REQUIRED
result_type CDATA #REQUIRED
rdmldoc_type CDATA #REQUIRED
timestamp CDATA #IMPLIED

version CDATA #IMPLIED
expiration CDATA #IMPLIED

freq_of update CDATA #IMPLIED >

<IELEMENT macro_source (contact_info+)>

<!ELEMENT license_terms (contact_info, linkset?)>
<IATTLIST license_terms

copyright_cite ~ CDATA #REQUIRED
holder CDATA #IMPLIED
license_type CDATA #IMPLIED
warranty CDATA #IMPLIED
disclaimer CDATA #IMPLIED
terms CDATA #IMPLIED
date CDATA #IMPLIED

. email CDATA #IMPLIED
state CDATA #IMPLIED
country CDATA #IMPLIED >

<!ELEMENT contact_info (#fPCDATA)>

<!ATTLIST contact_info
role CDATA #IMPLIED
name CDATA #IMPLIED

US 9,262,383 B2

101 102
company - CDATA #IMPLIED
address CDATA #IMPLIED
city CDATA #IMPLIED
state CDATA #IMPLIED
zip CDATA . #IMPLIED
country CDATA #IMPLIED
email CDATA #IMPLIED
xlink:form CDATA #IMPLIED
href CDATA #IMPLIED
comments CDATA #IMPLIED >

<IELEMENT linkset (link*)>

<!ATTLIST linkset
xlink_form CDATA #FIXED ‘extended’
href CDATA #IMPLIED >

<!ELEMENT link (#PCDATA) >
<!ATTLIST link

xlink_form CDATA #FIXED 'simple’
href CDATA #REQUIRED
behavior CDATA #IMPLIED
content-role CDATA #IMPLIED
content-title CDATA #IMPLIED

role CDATA #IMPLIED

title CDATA #IMPLIED
show CDATA H#FIXED 'new'
actuate CDATA #FIXED 'user' >

<!ELEMENT documentation (macro_description, help_page*)>
<!ELEMENT macro_description (#PCDATA)>
<!ELEMENT help_page (#PCDATA)>

<!ELEMENT macro_code (code, instructions, gui, variable_set?, qualifiers, error_handling,
testing)>

<!ELEMENT code (#PCDATA)>
<!ELEMENT instructions ({PCDATA)>
<!ELEMENT gui (comp_rpanel? | comp_ipanel? | comp_list? | comp_vector?)>

<!ELEMENT comp_rpanel (comp_rbutton*)>
<!ATTLIST comp_rpanel

103

variable_name
intro_label
visible

legend
legend_type

<!ELEMENT comp_rbutton (#PCDATA)>

US 9,262,383 B2

CDATA
CDATA
CDATA
CDATA
CDATA

<!ATTLIST comp_rbutton

label

value
isDefault
icon

desc

legend
legend_type

<!ELEMENT comp_ipanel (comp_ifield*)>

<!ELEMENT comp_ifield (#PCDATA)>

CDATA
CDATA
CDATA
CDATA
CDATA
CDATA
CDATA

<!ATTLIST comp_ifield

variable_name
variable_label
intro_labe]
default_value
desc

legend
legend_type

<!ELEMENT comp_list (comp_listitem*)>

CDATA
CDATA
CDATA
CDATA
CDATA
CDATA
CDATA

<!ATTLIST comp_list

variable_name
intro_label
default_item
legend
legend_type

<!ELEMENT comp_listitem (#PCDATA)>

CDATA
CDATA
CDATA
CDATA
CDATA

<!ATTLIST comp_listitern

label

value

icon

desc

legend
legend_type

CDATA
CDATA
CDATA
CDATA
CDATA
CDATA

104

#REQUIRED
#IMPLIED
#IMPLIED
#IMPLIED
#IMPLIED >

#REQUIRED
#REQUIRED
#REQUIRED
#IMPLIED
#IMPLIED
#IMPLIED
#IMPLIED >

#REQUIRED
#REQUIRED
#REQUIRED
#REQUIRED
#IMPLIED
#IMPLIED
#IMPLIED >

#REQUIRED
#REQUIRED
#REQUIRED
#IMPLIED
#IMPLIED >

#REQUIRED
#REQUIRED
#IMPLIED
#IMPLIED
#IMPLIED
#IMPLIED >

US 9,262,383 B2
105 106

<!ELEMENT comp_vector (line_item)>
<!ATTLIST comp_vector

variable_name CDATA #REQUIRED
intro_label CDATA #REQUIRED
default_item CDATA #REQUIRED

desc CDATA #IMPLIED

legend CDATA #IMPLIED
legend_type CDATA #IMPLIED >

<!ELEMENT variable_set (variable*)>

<!ELEMENT variable (#PCDATA | line_item)*>
<!ATTLIST variable

variable_name CDATA #REQUIRED
variable_type CDATA #REQUIRED
value CDATA #REQUIRED
href CDATA #IMPLIED

subref CDATA #IMPLIED >

<!ELEMENT qualifiers (#PCDATA)>

<!ELEMENT error_handling (#PCDATA)>

<!ELEMENT testing (#PCDATA)>

<!ELEMENT macro_references (macrodocs?, datadocs?)>
<!ELEMENT macrodocs (#HPCDATA)>

<!ELEMENT datadocs (#PCDATA)>

<!ELEMENT line_item (data_x?, data_y, linkset?, note_set?) >
<IATTLIST line_item

li_ID CDATA #REQUIRED
li_legend CDATA #REQUIRED
li_title CDATA #REQUIRED
li_cat CDATA #IMPLIED

y_axis_title CDATA #REQUIRED
level CDATA #REQUIRED
format CDATA #REQUIRED
relation CDATA #REQUIRED
li_notes CDATA #REQUIRED
li_desc CDATA #REQUIRED
li_prec CDATA #REQUIRED

li_unit CDATA #REQUIRED

107

li_mag
11_mod
li_measure
li_scale
li_adjustment
li_aggregation

US 9,262,383 B2

CDATA
CDATA
CDATA
CDATA
CDATA
CDATA

<!IELEMENT data_y #PCDATA)>

<!ELEMENT note_set (note+)>

<!ELEMENT note (#PCDATA)>

<IATTLIST note
note_type

CDATA

<!ELEMENT data_x (#PCDATA) >

<!ATTLIST data_x

X_title
format
X_notes
x_desc
X_prec
X_unit
X_mag
Xx_mod
X_measure
X_scale
x_adjustment
x_links

CDATA
CDATA
CDATA
CDATA
CDATA
CDATA
CDATA
CDATA
CDATA
CDATA
CDATA
CDATA

108

#REQUIRED
#REQUIRED
#REQUIRED
#REQUIRED
#REQUIRED
#IMPLIED >

#IMPLIED >

#REQUIRED
#REQUIRED
#IMPLIED

- #IMPLIED

#REQUIRED
#REQUIRED
#REQUIRED
#REQUIRED
 #REQUIRED
#REQUIRED
#REQUIRED
#REQUIRED >

US 9,262,383 B2
109 110

APPENDIX E: Sample RMML document

<7xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE macrodoc PUBLIC "-/.." "RMML].dtd" >

<macrodoc>

<macro_header
macrodoc_ID = "rmml_sort"
macro_title = "Sort"
macro_type = "TSL"
result_type = "replace_each"
rdmldoc_type = "TS"
timestamp = "1999-01-19T23:00:00"
version = "1.0.0"
expiration = "2000-01-19T23:00:00"
freq_of_update = "Annual” >

<macro_source>
<contact_info
role = "Macro Source"
name = "Russell T. Davis"”
company = "RDML, Inc."
address = "2 Wisconsin Circle, Suite 700"
city = "Chevy Chase"
state = "MD"
zip = "20815"
country = "USA"
email = "rt__davis@sprynet.com"
href = "http://www.rdml.com"
comments ="" >
</contact_info>
</macro_source>

<license_terms ‘
copyright_cite = "Copyright 1998, RDML, Inc. All Rights Reserved"
holder = "RDML, Inc."
license_type = "Payment Per Download"
warranty = "No warranty is expressed or implied. Use this data at your own risk."
disclaimer = "This data is provided 'as-is". The provider assumes no responsibility for its use
or misuse."
terms = "$1 per RMMLDoc download"
date = "1999.0123000000.00"
email = "license @rdml.com”
state = "MD"
country = "USA" >

US 9,262,383 B2
111 112

<contact_info
role = "Licensee"
name = "Russell T. Davis"
company = "RDML, Inc." ‘
address = "2 Wisconsin Circle, Suite 700"
city = "Chevy Chase"
state = "MD"
zip = "20815"
country = "USA"
email = "rt_davis @sprynet.com"
href = "http://www.rdml.com"
comments ="" >

</contact_info>

</license_terms>

<linkset
xlink_form = "extended"
href = "http://www.rdml.com" >
<link
xlink_form = "simple"
href = "http://www.rdml.com”
behavior = ""
content-role =
content-title =
role=""
title = ""
show = "new"
actuate = "user”" >
</link>
</linkset>

"

LIRL)

<documentation>
<macro_description>
Adds a line showing the minimum or maximum, according to the parameters
</macro_description>
<help_page>
No Help Page is currently available
</help_page>
</documentation>

</macro_header>
<macro_code>

<code>

US 9,262,383 B2
113 114

IF(ichoice=0, SORT(A,0), IF(ichoice=1, SORT(A,1), A))
</code>

<instructions>
</instructions>

<gui>
<comp_rpanel
variable_name = "ichoice"
intro_label = "Select a parameter:" >

<comp_rbutton
label = "Ascending"

value = "0"
isDefault = "true"
icon="">

</comp_rbutton>

<comp_rbutton
label = "Descending"

value="1"
isDefault = "false"
icon="">

</comp_rbutton>

</comp_rpanel>
</gui>

<qualifiers>
</qualifiers>
<error_handling>
</error_handling>
<testing>
</testing>
</macro_code>

<macro_references>
<macrodocs>
</macrodocs>
<datadocs>
</datadocs>

</macro_references>

</macrodoc>

US 9,262,383 B2
115 116

Appendix F: MS Excel Visual Basic routine for adding "attribute value columns" to a data table
Private Sub UserForm_Initialize()

¢mdOK.SetFocus

txtChartTitle. Text =""

txtY AxisTitle. Text = ""

cboFormat. AddItem ("#,##0;(#,##0)")
cboFormat. AddItem ("#,##0.00;(#,##0.00)")
cboFormat. AddItem ("0.00%;(0.00%)")
cboFormat.ListIndex = 0

txtFootnote. Text = "Source: "

Dim NodeX As Node

Set NodeR = treeUnit.Nodes.Add(, , "r", "Select One: (Default is blank)")
'Currency

Set NodeA = treeUnit.Nodes.Add("r", tvwChild, "c¢", "Currency")

Set Nodes = treeUnit.Nodes.Add("c", tvwChild, "dus", "$ US")

Set NodeX = treeUnit.Nodes.Add("c", tvwChild, "puk"”, "Pounds UK")
Set NodeX = treeUnit.Nodes.Add("c", tvwChild, "yjp", "Yen Japanese™)

'Length

Set NodeX = treeUnit.Nodes. Add("r", tvwChild, "1", "Length")

Set NodeX = treeUnit.Nodes.Add("l", tvwChild, "Feet", "Feet")

Set NodeX = treeUnit.Nodes. Add("l", tvwChild, "Meters", "Meters")

'‘Area

Set NodeX = treeUnit.Nodes. Add(" ", tvwChild, "a", "Area")

Set NodeX = treeUnit.Nodes.Add("a", tvwChild, "SqFeet", "Square Feet")

Set NodeX = treeUnit.Nodes.Add("a", tvwChild, "SqMeters", "Square Meters")

‘tree formatting
NodeA EnsureVisible

'Magnitude ComboBox

cboMagnitude. AddItem ("As-Is")
cboMagnitude. AddItem ("Thousands")
cboMagnitude. AddItem ("Millions")
cboMagnitude. AddItem ("Billions")
cboMagnitude.ListIndex = 0

End Sub

Private Sub cmdCancel_Click()

US 9,262,383 B2
117 118

End
End Sub

Private Sub cmdOK_Click()

rcount = Selection.Rows.Count

1i_ID

Selection.EntireColumn.Insert
ActiveCell.Select
ActiveCell.FormulaR1C1 = "li_ID"
ActiveCell.Offset(1, 0).Range("A1").Select
ActiveCell. FormulaR1C1 = "1"
ActiveCell.Offset(1, 0).Range("A1").Select
ActiveCell. FormulaR1C1 = "=R[-1]C+1"
ActiveCell.Select

Selection.Copy

r="Al:A" & (rcount - 3)
ActiveCell.Offset(1, 0).Range(r).Select
ActiveSheet.Paste
Application.CutCopyMode = False

1i_legend
ActiveCell.Offset(-3, 1).Range("A1").Select
ActiveCell.FormulaR1C1 = "li_legend"

1i_title

ActiveCell. Offset(0, 1).Columns("A:A").EntireColumn.Select
Selection.Insert Shift:=x1ToRight
ActiveCell.Select

ActiveCell. FormulaR1C1 = "li_title"
ActiveCell.Offset(1, 0).Range("A1").Select
ActiveCell.FormulaR 1C1 = txtChartTitle. Text
ActiveCell.Select

Selection.Copy

r="Al:A" & (rcount - 2)

ActiveCell.Offset(1, 0).Range(r).Select
ActiveSheet.Paste

Application.CutCopyMode = False

1i_cat

ActiveCell.Offset(0, 1).Columns("A:A").EntireColumn.Select
Selection.Insert Shift:=x1ToRight

ActiveCell.Select

ActiveCell. FormulaR1C1 = "li_cat"

US 9,262,383 B2
119 120

'y_axis_title .

ActiveCell.Offset(0, 1).Columns("A:A").EntireColumn.Select
Selection.Insert Shift:=xIToRight
ActiveCell.Select

ActiveCell.FormulaR1C1 = "y_axis_title"
ActiveCell . Offset(1, 0).Range("A1").Select
ActiveCell. FormulaR1C1 = txtY AxisTitle. Text
ActiveCell.Select

. Selection.Copy

r="Al:A" & (rcount - 2)
Selection.ColumnWidth = 8
ActiveCell.Offset(1, 0).Range(r).Select
ActiveSheet.Paste

Application.CutCopyMode = False

level

ActiveCell.Offset(0, 1).Columns("A:A").EntireColumn.Select
Selection.Insert Shift:=x1ToRight
ActiveCell.Select
ActiveCell.FormulaR1C1 = "level"
ActiveCell.Offset(1, 0).Range("A1").Select
ActiveCell. FormulaR1C1 ="1"
ActiveCell.Select

Selection.Copy

r="Al:A" & (rcount - 2)
Selection.ColumnWidth = 8
ActiveCell.Offset(1, 0).Range(r).Select
ActiveSheet.Paste
Application.CutCopyMode = False

'format

ActiveCell.Offset(0, 1).Columns("A:A").EntireColumn.Select
Selection.Insert Shift:=xIToRight
ActiveCell.Select

ActiveCell.FormulaR1C1 = "format"
ActiveCell.Offset(1, 0).Range("A1").Select
ActiveCell.FormulaR 1C1 = cboFormat.value
ActiveCell.Select

Selection.Copy

r="Al:A" & (rcount - 2)
ActiveCell.Offset(1, 0).Range(r).Select
ActiveSheet.Paste
Application.CutCopyMode = False

US 9,262,383 B2
121 122

'relation

ActiveCell. Offset(0, 1).Columns("A:A").EntireColumn.Select
Selection.Insert Shift:=xIToRight
ActiveCell.Select

ActiveCell. FormulaR1Cl = "relation"
ActiveCell . Offset(1, 0).Range("A1").Select
ActiveCell. FormulaR1C1 = "Parent"
ActiveCell.Select

Selection.Copy

r="Al:A" & (rcount - 2)
ActiveCell.Offset(1, 0).Range(r).Select
ActiveSheet.Paste
Application.CutCopyMode = False

'li_notes

ActiveCell.Offset(0, 1).Columns("A:A").EntireColumn.Select
Selection.Insert Shift:=xIToRight
ActiveCell.Select

ActiveCell. FormulaR1C1 = "li_notes"
ActiveCell.Offset(1, 0).Range("Al1").Select
ActiveCell. FormulaR 1C1 = txtFootnote. Text
ActiveCell.Select

Selection.Copy

r="Al:A" & (rcount - 2)
Selection.ColumnWidth = 8
ActiveCell.Offset(1, 0).Range(r).Select
ActiveSheet.Paste
Application.CutCopyMode = False

'li_desc

ActiveCell.Offset(0, 1).Columns("A:A").EntireColumn.Select
Selection.Insert Shift:=xIToRight

ActiveCell.Select

ActiveCell.FormulaR1C1 = "li_desc"

'li_prec :
ActiveCell.Offset(0, 1).Columns("A:A").EntireColumn.Select
Selection.Insert Shift:=xIToRight

ActiveCell.Select

ActiveCell. FormulaR1C1 = "li_prec"

'li_unit

ActiveCell.Offset(0, 1).Columns("A:A").EntireColumn.Select
Selection.Insert Shift:=x1ToRight

ActiveCell.Select

US 9,262,383 B2
123 124

ActiveCell. FormulaR1C1 = "li_unit"
ActiveCell.Offset(1, 0).Range("A1").Select
u=""

On Error Resume Next

u = treeUnit.SelectedItem.Text
ActiveCell FormulaRI1C] = u
ActiveCell.Select

Selection.Copy

r="Al:A" & (rcount - 2)

ActiveCell Offset(1, 0).Range(r).Select
ActiveSheet,Paste

Application.CutCopyMode = False

'li_mag

'first calculate the value to put in

If (StrComp(cboMagnitude.value, "As-Is") = 0) Then
m=0 '

End If

If (StrComp(cboMagnitude.value, "Thousands") = 0) Then
m=3

End If _

If (StrComp(cboMagnitude.value, "Millions") = 0) Then
m=6 .

End If

If (StrComp(cboMagnitude.value, "Billions") = Q) Then
m=9

End If

ActiveCell.Offset(0, 1).Columns("A:A").EntireColumn.Select
Selection.Insert Shift:=xIToRight

ActiveCell.Select

ActiveCell. FormulaR1C1 = "li_mag"

ActiveCell.Offset(1, 0).Range("A1").Select
ActiveCell.FormulaRI1C1 = m

ActiveCell.Select

Selection.Copy

r="Al:A" & (rcount - 2)

ActiveCell.Offset(1, 0).Range(r).Select

" ActiveSheet.Paste

Application.CutCopyMode = False

i_mod

ActiveCell.Offset(0, 1).Columns("A:A").EntireColumn.Select
Selection.Insert Shift:=x]ToRight

ActiveCell.Select

US 9,262,383 B2
125 126

ActiveCell.FormulaR1C] = "li_mod"

'li_measure

ActiveCell.Offset(0, 1).Columns("A:A").EntireColumn.Select
Selection.Insert Shift:=xIToRight

ActiveCell.Select

ActiveCell.FormulaR1C1 = "li_measure"

1i_scale

ActiveCell.Offset(0, 1).Columns("A:A").EntireColumn.Select
Selection.Insert Shift:=x1ToRight

ActiveCell.Select

ActiveCell.FormulaR1C1 = "li_scale"

'li_adjustment

ActiveCell.Offset(0, 1).Columns("A:A"). EntlreColumn Select
Selection.Insert Shift:=xIToRight

ActiveCell.Select

ActiveCell. FormulaR1Cl = "li_adjustment”

'li_aggregation :

ActiveCell.Offset(0, 1). Columns("A A").EntireColumn.Select
Selection.Insert Shift:=xIToRight

ActiveCell.Select

ActiveCell. FormulaR1C] = "li_aggregation”

End
End Sub

US 9,262,383 B2
127 128

Appendix G: MS Excel Visual Basic routine creating a tagged document from a spreadsheet data
table

Private Sub Framel_Click()
End Sub
Private Sub UserForm_ Initialize()

cmdOK.SetFocus

RefEdit_data.value = "Sheet]!A1:AB51"
txtDefaultFile. Text = "D:\default].rdm"
txtOutputDir. Text = "D:\"

txtOutputFile. Text = "out.rdm"
cboLineltemType. AddItem ("TimeSeries")
cboLineltemType.AddItem ("Category")
cboLineltemType.AddItem ("XYPlot")
cboLineltemType.ListIndex = 0
cbNonFileDefaults.value = False

End Sub

Private Sub cmdCancel_Click()
End
End Sub

Private Sub cmdOK_Click()
Dim buff As String
buff = createlntro
buff = buff & createHeader
buff = buff & createLISet
buff = buff & createLineltems
buff = buff & "</line_item_set>" & Chr(10)
buff = buff & createEnding
replaceAttribute buff, "rdmldoc_header”, "rdmldoc_ID", txtOutputFile.value
replaceAttribute buff, "rdmldoc_header", "doc_title", txtDocTitle.value
replaceAttribute buff, "line_item_set", "line_item_set_type", cboLineltemType.SelText
replaceAttribute buff, "data_x", "x_title", txtX AxisTitle.value
fillXData buff
CreateFile (buff)
End
End Sub

Private Sub cmdBrowseDefault_Click()

US 9,262,383 B2
129 130

CommonDialogl.ShowOpen
txtDefaultFile.Text = CommonDialog1.Filename
End Sub
Private Sub cmdBrowseQutputDir_Click()
CommonDialogl.ShowOpen
txtOutputFile. Text = CommonDialog1.Filename
End Sub
Private Sub UserForm_Click()
End Sub
Private Sub getConfiguration()
End Sub

Private Function createHeader()

'buff will be the buffer that collects the string
Dim buff As String

'If user wants the program to create a default

If cbNonFileDefaults.value = True Then
buff = buff & defHeader

End If

'Or get the default header values from a file
buff = createDefHeader

'return
createHeader = buff

End Function

Private Function createDefHeader()
'Declarations
Dim h As String
Dim wholefile As String

‘'open the default file
Dim Def_file As String

US 9,262,383 B2
131 132

Def file = txtDefaultFile. Text
Open Def_file For Input As #2
wholefile = Input$(LOF(2), 2)
Close #2

‘put the rdmldoc_header into a string _
h = getElementByTagName(wholefile, "rdmldoc_header")
createDefHeader = h '

End Function
Private Function createLISet()

'Declarations
Dim h As String
Dim wholefile As String

‘open the default file

Dim Def_file As String

Def file = txtDefaultFile. Text
Open Def_file For Input As #2
wholefile = Input$(LOF(2), 2)
Close #2

'put the the line item set overall tags into a string

h = getOpeningElementTag(wholefile, "line_item_set")

h = h & getElementByTagName(wholefile, "data_x")
h=h & getElementByTagName(wholefile, "li_class_set")
h =h & getElementByTagName(wholefile, "linkset")
createLISet = h

End Function

Public Function getElementByTagName(str As String, el As String)
startPos = InStr(1, str, "<" & el, 1)
endPos = InStr(1, str, "</" & el, 1)
element = Mid(str, startPos, endPos - startPos + Len(el) + 4)
getElementByTagName = element

End Function

Public Function getOpeningElementTag(str As String, €l As String)

startPos = InStr(1, str, "<" & el, 1)

US 9,262,383 B2
133 134

endPos = InStr(startPos, str, ">", 1)
element = Mid(str, startPos, endPos - startPos + 5)
getOpeningElementTag = element

End Function

Private Sub CreateFile(buff)

Dim Outfile As String
Outfile = txtOutputDir.Text & txtOutputFile. Text

Open Outfile For Output As #1
Print #1, buff
Close #1

End Sub
Private Function createlntro()
buff — "

'Header Information

buff = buff & "<?xml version=" & Chr(34) & "1.0" & Chr(34)
buff = buff & " encoding=" & Chr(34) & "UTF-8" & Chr(34)
buff = buff & " standalone=" & Chr(34) & "no" & Chr(34)
buff = buff & "?>" & Chr(10)

'DTD Declaration

buff = buff & "<!DOCTYPE rdmldoc PUBLIC "
buff = buff & Chr(34) & "-//.." & Chr(34) & " "
buff = buff & Chr(34) & "RDML1.dtd" & Chr(34)
buff =buff & "> " & Chr(10)

'begin rdmldoc tag
buff = buff & "<rdmldoc>" & Chr(10)

'return
createlntro = buff

End Function
Private Function createEnding()

buff - e

US 9,262,383 B2
135 136

buff = buff & "</rdmldoc>" & Chr(10)

return
createEnding = buff

End Function
Private Function defHeader()
buff = ne

'return
defHeader = buff

End Function

Private Function createLineltems()
Dim data As Range
t = RefEdit_data.value

createLineltems = fillLineItems(Range(t), cboLineltemType.value)

End Function

'

" Procedure: Fill_line_item()

1

t

Purpose: Prepare the line_item element
This element contains information about the line_item

t

1

" From DTD:

'<!ELEMENT line_item (data_x?, data_y, li_class_set?, analysis?,
'link_set?, note_set?) >

'<!ATTLIST line_item

li_ID CDATA #REQUIRED
" li_legend CDATA #REQUIRED
" li_title CDATA #REQUIRED
' li_table CDATA #IMPLIED
" y_axis_title ' CDATA #REQUIRED
" level CDATA #REQUIRED
' format CDATA #REQUIRED
" relation CDATA #REQUIRED
" li_notes CDATA #REQUIRED

' li_desc CDATA #REQUIRED

137

li_prec
li_unit
li_mag
li_mod
li_measure
li_scale
li_adjustment

CDATA
CDATA
CDATA
CDATA
CDATA
CDATA
CDATA

US 9,262,383 B2

#REQUIRED
#REQUIRED
#REQUIRED
#REQUIRED
#REQUIRED
#REQUIRED
#REQUIRED >

Public Function fillLineltems(data As Range, litype As String)

Declarations
Dim J, K As Integer
Dim Max As Integer

'If this is an XYPlot, use the other routine
If litype = "XYPlot” Then

'Fill_line_item_xy
Else

'Initializations
K=1
buff=""

NumlLlI = data.Rows.Count

'Cycle through all the line items

For N =2 To NumlLlI

'Insert opening tag

buff = buff & " <line_item" & Chr(10)

Insert the Attributes

addAttribute buff, "li_ID", data.Cells(N, 1), 6, 0

addAttribute buff, "li_legend", data.Cells(N, 2), 6, 0

addAttribute buff, "li_title", data.Cells(N, 3), 6, 0
addAttribute buff, "li_cat", data.Cells(N, 4), 6,0

addAttribute buff, "y_axis_title", data.Cells(N, 5), 6, 0

addAttribute buff, "level”, data.Cells(N, 6), 6, 0
addAttribute buff, "format", data.Cells(N, 7), 6, 0
addAttribute buff, "relation", data.Cells(N, 8), 6, 0
addAttribute buff, "li_notes", data.Cells(N, 9), 6,
addAttribute buff, "li_desc"”, data.Cells(N, 10), 6,

addAttribute buff, "li_unit", data.Cells(N, 12), 6,

0

6,0

addAttribute buff, "li_prec", data.Cells(N, 11), 6,0
6,0

0

0

addAttribute buff, "li_mag", data.Cells(N, 13), 6,
addAttribute buff, "li_mod", data.Cells(N, 14), 6,

138

US 9,262,383 B2
139 140

addAttribute buff, "li_measure", data.Cells(N, 15), 6,0
addAttribute buff, "li_scale", data.Cells(N,. 16), 6, 0
addAttribute buff, "li_adjustment”, data.Cells(N, 17), 6, 1

'Fill the body of the tag with a comma-delimited string of the y-data numbers
buff = buff & " <data_y>" & Chr(10)
MaxLI = NumLI- 2
MaxDP = data.Columns.Count - 17
For K = 1 To MaxDP

buff = buff & data.Cells(N, 18 + K) & ", "

If (K Mod 10) =0 Then

buff = buff & Chr(10)

End If
Next K
buff = buff & Chr(10) & " </data_y>" & Chr(10)

'Insert ELEMENT: analysis
'Insert ELEMENT: li_class_set
'Insert ELEMENT: 'linkset'
'Call FillTag("linkset")

Tnsert ELEMENT: note_set

'Insert closing tag for that line item
buff = buff & Chr(10) & " </line_item>" & Chr(10)

'Every 10 line items, flush the buffer
Tf N Mod 5 =0 Then

' Call SaveToFile(buff)

'End If

Next N

'Closes the test for XYPlot at beginning of routine
End If

fillLineltems = buff

End Function

1

Procedure: addAttribute(name, value)

1

" Purpose: Adds an attribute line to "buff"

Public Sub addAttribute(buff, name, value, indent, last)

US 9,262,383 B2
141 142

' Build the indentation

Dim strIndent As String

strindent = """

ForJ =1 To indent
strindent = strIndent & " "

Next]J

' Build the string
buff = buff & strIndent & name & " =" & Chr(34) & value & Chr(34)

'Add an ending >' tag if "last" is 1; else simple add a carriage return
If last = 1 Then
buff = buff & " >" & Chr(10)
Else '
buff = buff & Chr(10)
End If

End Sub
Private Sub replaceAttribute(f As String, el As String‘, att As String, val As String)
f = Replace(f, att & " =" & Chr(34) & Chr(34), att & " = " & Chr(34) & val & Chr(34))
End Sub
Private Sub fillXData(f As String)

'build the string of X values

‘Dim data As Range

Dim v As String

t = RefEdit_data.value

v = Chr(10) & Range(t).Cells(1, 19)

For I = 20 To Range(t).Columns.Count
v=v&", " & Range(t).Cells(1, J)

Next J

v=v & Chr(10)

'replace the current x data element text
f = Replace(f, "></data_x>", ">" & v & " </data_x>")

End Sub

US 9,262,383 B2

143

The invention claimed is:

1. A computer program product embodied on a non-tran-
sitory computer-readable medium comprising:

code for identifying a first markup document including first

numerical values and first tags reflecting first character-
istics of the first numerical values associated with a first
unit of measure, and a second markup document includ-
ing second numerical values and second tags reflecting
second characteristics of the second numerical values
associated with a second unit of measure, wherein the
first tags and the second tags each include computer-
readable semantic tags that describe a semantic meaning
of'a corresponding one of at least one of the first numeri-
cal values or the second numerical values, via a com-
puter-readable tagging association therebetween, where
the first characteristics of the first numerical values asso-
ciated with the first unit of measure are different from the
second characteristics of the second numerical values
associated with the second unit of measure;

code for causing automatic transformation of at least a

portion of the first or second numerical values of at least
one of the first markup document or the second markup
document, so that at least some of the first numerical
values of the first markup document and at least some of
the second numerical values of the second markup docu-
ment have a common unit of measure;

code for processing at least a part of the first markup

document and at least a part of the second markup docu-
ment, resulting in a single markup document; and

code for causing a display of at least a portion of the single

markup document.

2. The computer program product of claim 1, wherein the
computer program product is configured for allowing a user
to edit a mapping of one or more of the computer-readable
semantic tags to a corresponding one of the at least one of the
first numerical values or the second numerical values.

3. The computer program product of claim 1, wherein the
computer program product is operable such that the first unit
of measure includes a first currency and the second unit of
measure includes a second currency.

4. The computer program product of claim 1, and further
comprising code for manipulating the display of the single
markup document using at least one of the first tags reflecting
the first characteristics of the first numerical values associated
with the first unit of measure, or the second tags reflecting the
second characteristics of the second numerical values asso-
ciated with the second unit of measure.

5. The computer program product of claim 1, wherein the
computer program product is configured such that the first
markup document and the second markup document each
include a XML-compliant data document that includes mul-
tiple hierarchical relationships between two line items of
corresponding numerical values, and is further capable of
including computer-readable semantic tags that each describe
a semantic meaning of one or more of corresponding numeri-
cal values.

6. The computer program product of claim 5, wherein the
computer program product is configured such that the com-
puter-readable semantic tags are each computer-readably
coupled to the one or more of the corresponding numerical
values.

7. The computer program product of claim 1, wherein the
computer program product is configured such that the single
markup document includes a XML -compliant data document
that includes multiple hierarchical relationships between two
line items of corresponding numerical values, and is further

10

15

20

25

30

35

40

45

50

55

60

65

144

capable of including computer-readable semantic tags that
each describe a semantic meaning of one or more of corre-
sponding numerical values.

8. The computer program product of claim 1, wherein the
computer program product is operable such that the single
markup document includes a XML -compliant data document
that is capable of including at least one of: multiple hierar-
chical relationships between two line items of corresponding
numerical values, or computer-readable semantic tags that
each describe a semantic meaning of one or more of corre-
sponding numerical values.

9. The computer program product of claim 8, wherein the
computer program product is configured for utilizing a plu-
rality of computer-readable rules for processing the XML-
compliant data document, the computer-readable rules
including:

a computer-readable datatype rule for validation of a value

Wpes

a computer-readable calculation rule for validation of a

value calculation, and

a computer-readable unit rule for validation of a value unit.

10. The computer program product of claim 8, wherein the
computer program product is configured for validating the
XML-compliant data document by:

identifying at least a subset of a plurality of computer-

readable rules including at least one of:

a computer-readable datatype rule for validation of a
value type,

a computer-readable calculation rule for validation of a
value calculation, or

a computer-readable unit rule for validation of a value
unit; and

processing at least a portion of the XML -compliant data

document, utilizing the at least subset of the computer-
readable rules.

11. The computer program product of claim 8, wherein the
computer program product is configured such that the XML.-
compliant data document includes an extensible semantic
tag-equipped markup language component and a hypertext
markup language (HTML) component.

12. The computer program product of claim 11, wherein
the computer program product is configured such that at least
one XML -compliant data document is capable of being dis-
played utilizing a network browser for allowing review of the
HTML component in addition to access the extensible
semantic tag-equipped markup language component.

13. The computer program product of claim 1, wherein the
computer program product is configured for storing at least
one object including at least one reference to an original value
of at least one of the first numerical values or the second
numerical values.

14. The computer program product of claim 13, wherein
the computer program product is configured for outputting a
presentation or report that is based on at least a portion of the
at least one object, the presentation or report capable of
including at least one of the first numerical values or the
second numerical values, including the original value, such
that, based on the at least one reference of the at least one
object, a change to the original value results in a correspond-
ing change in an instance of the presentation or report.

15. The computer program product of claim 13, wherein
the computer program product is configured such that the
single markup document includes a XML-compliant data
document that includes multiple hierarchical relationships
between two line items of corresponding numerical values,
and is further capable of including computer-readable seman-
tic tags that each describe a semantic meaning of one or more

US 9,262,383 B2

145

of'the corresponding numerical values, wherein the computer
program product is further configured for outputting the
XML-compliant data document based on at least a portion of
the at least one object, the XML-compliant data document
capable ofincluding at least a portion of at least one of the first
numerical values or the second numerical values, including
the original value, such that, based on the at least one refer-
ence of the at least one object, a change to the original value
results in a corresponding change in an instance of the XML-
compliant data document.

16. The computer program product of claim 1, wherein the
computer program product is configured such that at least one
of:

said code for causing the automatic transformation is

capable of automatically transforming the at least por-
tion of the numerical values of the first markup docu-
ment the second markup document;

said identifying includes receiving;

said first tags or second tags result from tagging;

said characteristics include at least one of a magnitude,

scale, modifier, unit, and measurement;

said tags reflect structure;

said processing includes merging or combining;

said processing results in a single data set, and said code for

causing the display causes display of the single data set;
said single markup document is caused to be displayed on
a single graphical display;

said single markup document includes an RDML docu-

ment;

said single markup document is caused to be displayed

without requiring a user to make manual adjustments; or
said at least portion of the single markup document
includes the numerical values thereof.

17. A method comprising:

identifying a first markup document including first numeri-

cal values and first tags reflecting first characteristics of
the first numerical values associated with a first unit of
measure, and a second markup document including sec-
ond numerical values and second tags reflecting second
characteristics of the second numerical values associ-
ated with a second unit of measure, wherein the first tags
and the second tags each include computer-readable
semantic tags that describe a semantic meaning of a
corresponding one of at least one of the first numerical
values or the second numerical values, via a computer-
readable tagging association therebetween, where the
first characteristics of the first numerical values associ-

10

20

25

30

35

40

45

146

ated with the first unit of measure are different from the
second characteristics of the second numerical values
associated with the second unit of measure;

automatically transforming at least a portion of the first or
second numerical values of at least one of the first
markup document or the second markup document, so
that at least some of the first numerical values of the first
markup document and at least some of the second
numerical values of the second markup document have a
common unit of measure;

processing at least a part of the first markup document and
at least a part of the second markup document, resulting
in a single markup document; and

causing a display of at least a portion of the single markup
document.

18. An apparatus, comprising:

means for identifying a first markup document including
first numerical values and first tags reflecting first char-
acteristics of the first numerical values associated with a
first unit of measure, and a second markup document
including second numerical values and second tags
reflecting second characteristics of the second numerical
values associated with a second unit of measure,
wherein the first tags and the second tags each include
computer-readable semantic tags that describe a seman-
tic meaning of a corresponding one of at least one of the
first numerical values or the second numerical values,
via a computer-readable tagging association therebe-
tween, where the first characteristics of the first numeri-
cal values associated with the first unit of measure are
different from the second characteristics of the second
numerical values associated with the second unit of mea-
sure;

means for automatically transforming at least a portion of
the first or second numerical values of at least one of the
first markup document or the second markup document,
so that at least some of the first numerical values of the
first markup document and at least some of the second
numerical values of the second markup document have a
common unit of measure;

means for processing at least a part of the first markup
document and at least a part of the second markup docu-
ment, resulting in a single markup document;

means for causing a display of at least a portion of the
single markup document.

#* #* #* #* #*

